
 

  
Abstract—Binarization plays a key role in image processing. Its 

performance directly affects the success of subsequent character 
segmentation and recognition. The Phansalkar algorithm 
performs excellent in processing heavily degraded or poor-quality 
images. However, this algorithm requires significant hardware 
costs. In this paper, efficient stochastic computing (SC) function 
and architecture are proposed for the Phansalkar algorithm. 
Highly accurate stochastic elements are designed for this 
architecture, including a stochastic mean circuit (SMC), a 
stochastic unipolar subtractor (USUB), a stochastic square root 
circuit (SQRT), and a stochastic exponential circuit (SEXP). 
Simulation results show that the SC architecture using 64-bit 
streams for the Phansalkar algorithm provides sufficient accuracy. 
Physical implementation indicates the effectiveness of the 
proposed architecture in lowering hardware costs for this 
algorithm compared to the binary counterpart. 
 

Index Terms—Image binarization, Phansalkar algorithm, 
stochastic computing. 

I. INTRODUCTION 
INARIZATION is an initial step in some image analyses to 
separate target areas from the background. It is a complex 

task for heavily degraded or poor-quality images, which are 
affected by factors such as non-uniform intensity, shadows, 
smear, smudge, and low contrast. For example, confocal 
images are often non-uniformly illuminated [1]. Therefore, an 
effective image binarization algorithm is essential for 
processing such images. Binarization is the process of finding 
one or more ideal thresholds to divide pixels in an image into 
two groups, namely (1) the foreground (including text, 
characters, and shapes) and (2) the background (including 
contextual surfaces). In general, the methods of image 
binarization are classified as either global thresholding or local 
thresholding. A global method searches for a threshold for an 
entire image, which performs well for images with clear 
separations between the foreground and the background, such 
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as the Otsu algorithm [2]. However, such separations are 
weakened in the images exposed to a gross environment. For 
these cases, a local thresholding method aims at estimating a 
threshold for each pixel based on its neighboring pixels, such as 
the Sauvola and Bernsen algorithms [3, 4]. Local thresholding 
methods have been widely employed for image analyses since 
they produce better results even for severely degraded or 
poor-quality images. The weighted binary implementations of 
these binarization algorithms usually consume large hardware 
costs and are highly susceptible to soft errors caused by cosmic 
radiation or noises caused by process, voltage, and temperature 
variations [5]. Tolerating these noises becomes increasingly 
important as devices continue to scale down to the nano regime. 

Stochastic computing (SC) has been initiated to lower 
hardware costs for specific applications that can be designed 
loosely [6, 7], such as image processing algorithms [8, 9], 
neural networks [10, 11, 12, 13], and polynomial computation 
[14, 15]. The applications of SC in image edge detection, 
contrast stretching, filtering, segmentation, and sharpening 
have been fully investigated by optimizing related stochastic 
components, relating to finite-state machines, nonscaled adders, 
mean circuits, and inner-product units [9, 16, 17]. In these 
works, the superiority of the fault tolerance of stochastic 
components to a variety of noises over weighted binary 
counterparts has already been deeply demonstrated, by 
injecting random bit flip errors into components. As for image 
binarization, the Sauvola algorithm has been implemented by 
using the designed stochastic mean circuits and comparators 
[18]. In degraded or poor-quality images, the thresholds 
computed by the Sauvola algorithm are generally very small, so 
many foreground or background pixels are wrongly categorized 
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Fig. 1.  The thresholds of the Phansalkar and Sauvola algorithms for different 
local means. 
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[3, 18]. For the Phansalkar algorithm [19], the thresholds are 
much larger than those found by the Sauvola algorithm for a 
small local mean, thus providing better performance in 
binarizing images, as shown in Fig. 1. However, the weighted 
binary implementation of this algorithm requires large 
hardware resources. 

To alleviate the issue that occurred in the implementation of 
the Phansalkar algorithm, a novel architecture is proposed for 
the algorithm in this paper to exploit the advantages of SC in 
reducing hardware costs. To this end, the parameters including 
q, p, and k, and window size W in the Phansalkar algorithm are 
searched by using the simulation method. The peak signal to 
noise ratio (PSNR), mean squared error (MSE), maximum 
squared error (MAXERR), and ratio of squared norms (L2RAT) 
using the command ‘measerr’ in MATLAB are used to measure 
the best parameters. With these parameters, an SC function for 
the algorithm is then formulated based on the basic stochastic 
components. For example, a stochastic unipolar subtractor 
(USUB), a stochastic square root circuit (SQRT), and a 
stochastic exponential circuit (SEXP) are respectively proposed 
to build the architecture for the Phansalkar algorithm, aiming at 
a higher computing accuracy and lower hardware costs. All the 
proposed stochastic components are evaluated using the MSE 
for computing accuracy and physically synthesized using the 
Design Compiler (DC) with a TSMC 40-nm gate library under 
100 MHz frequency and typical design corners. 

The main contributions of this paper are summarized as 
follows. 1) A nonscaled USUB consisting of an up/down 
counter and a comparator is proposed. Compared with the 
previous one which is based on a stochastic divider and needs 
multiple loops to generate stable results, the proposed USUB 
computes results with lower MSEs in one loop and reduces 
area-delay product (ADP) and power-delay product (PDP) by 
12.09% and 32.57%, respectively. 2) An SQRT is proposed by 
inserting a D flip flop to decorrelate the correlation to provide 
higher computing accuracy by sacrificing some hardware costs 
regarding a D flip flop. 3) An SEXP is proposed by saving three 
D flip-flops while realizing lower MSEs than previous designs. 
4) With these components, an SC function and architecture for 
the Phansalkar algorithm are derived and built to provide an 
MSE of 4.40×10-2, if using a 6-bit linear feedback shift register 
(LFSR). The SC architecture reduces ADP and PDP by 
approximately 98.43% and power by approximately 98.66% 
compared to the binary design implemented using the 
coordinate rotation digital computer (CORDIC) algorithm. The 
proposed architecture surpasses the designs composed of 
previous stochastic components in both hardware costs and 

computing accuracy. 
This work proceeds as follows. Section II introduces the 

basic concepts of the Phansalkar algorithm and SC. Section III 
presents the parameter setting, the formulated SC function, the 
proposed SC architecture, and the proposed stochastic 
components for the Phansalkar algorithm. Section IV illustrates 
the experimental results. Section V concludes this paper. 

II. BACKGROUND 

A. Phansalkar Algorithm 
For a pixel located at coordinates (x, y) and centered on a 

W×W window (W is an odd number), the Phansalkar algorithm 
computes its local threshold T(x, y) by using the local mean m(x, 
y) and standard deviation s(x, y) of neighboring pixels [19], as 

 ( ) ( ) ( ) ( ), ,
, , 1 1q m x y s x y

T x y m x y p e k
R

− ⋅  
= ⋅ + ⋅ + ⋅ −  

   
, (1) 

where k∈[0.2, 0.5], p and q are bias constants, and R is the 
maximum value of the standard deviation (often 128 for 8-bit 
gray-scale images) [19]. If the value of q is too large, the 
exponential term becomes negligible, and (1) functions as the 
Sauvola algorithm. The constant p determines the degree of the 
effect of the exponential term on the computed thresholds. For a 
very small p, the performance of this algorithm is almost the 
same as the Sauvola algorithm. For a very large p, the threshold 
becomes too high, and too many background pixels are 
classified as the foreground. Thus, the values of q, p, and k are 
key preconditions of an SC architecture for the Phansalkar 
algorithm. 

B. Stochastic Computing 
SC is a re-emerging computing paradigm with the potential 

to outperform the weighted binary computing in terms of 
hardware efficiency and fault tolerance, because it relies on 
logic operations on stochastic bitstreams. Stochastic bitstreams, 
referred to as stochastic numbers (SNs), are generated by a 
digital-to-stochastic (D/S) converter as listed in the 2nd column 
in TABLE I, by comparing a given n-bit binary number B and a 
random number R generated by a random number generator 
(RNG) [20]. It produces a 1 or a 0 if B is larger or smaller than R 
in each clock cycle to generate an SN with a length of 2n bits. 
The RNG is usually a 2n-bit LFSR or Sobol sequence generator 
(SSG), instead of a truly random number source [21]. 
Compared to pseudorandom numbers generated by an LFSR, 
an SSG generates low-discrepancy numbers and generally 
improves computing accuracy [22]. To convert an SN back to 
its binary encoding format, a stochastic-to-digital (S/D) 

TABLE I 
STOCHASTIC COMPONENTS 

Operation (a) D/S converter (b) S/D converter (b) Scaled addition (c) Addition (d) Addition (e) Multiplication (f) Division 

Component 

 
  

   
 

Function B→b b→B f=s∙x+(1-s)∙y f=x+y-x∙y f=x+y f=x∙y f=x/(x+y) 
Correlation NA NA Uncorrelated Uncorrelated Negatively correlated Uncorrelated Uncorrelated 

 



 

converter, for example, a counter, is employed to sum up each 
bit in an SN, as in the 3rd column [23]. In the unipolar format, 
the probability p of each bit being 1 in a bitstream equals the 
corresponding binary number B within [0, 1], while the 
probability p is (A+1)/2 in the bipolar format, where A is within 
[-1, 1]. Since this work focuses on image binarization with 
positive pixel values, we consider only the unipolar format later. 
We use lowercases to indicate bitstreams, corresponding binary 
values, and logic values for simplicity unless otherwise 
specified. One can distinguish the represented meaning from 
the context easily. 

The multiplexer (MUX)-based scaled adder performs 
f=s∙x+(1-s)∙y, where s is the select and has to be uncorrelated 
with inputs x and y, and x and y can be correlated with each 
other (In the 4th column). In addition, an OR gate with 
uncorrelated or negatively correlated bitstreams respectively 
performs f=x+y-x∙y or f=x+y (In the 5th and 6th columns). Thus, a 
nonscaled adder can be designed through an OR gate by 
manipulating the correlation. An AND gate performs f=x∙y if 
bitstreams x and y are uncorrelated (In the 7th column). An 
interesting stochastic component is the JK flip flop (JKFF), 
which performs stochastic division x/(x+y) provided that the 
uncorrelated input bitstreams are long enough (In the 8th 
column). 

As can be seen in TABLE I, the stochastic computing 
correlation (SCC) significantly affects the performed function 
for a stochastic component. The SCC value of two bitstreams x 

and y is defined as [24] 

 ( )

( )
( ) ( )

( )
( )
( ) ( )

,
, , 0

min ,

SCC , 0, , 0
,

, , 0
max 1,0

x y x y

x y x y

x y
x y

p p p p

x y x y
x y

x y
p p p p

δ
δ

δ
δ

δ


> −

= =

 <
 − + −

, (2) 

where δ(x,y)=pxy-pxpy (pxy is the probability of the ANDed 
results of x and y). A value of 0 means two bitstreams are 
ideally independent, while a value of +1 or -1 respectively 
indicates a maximally positive or negative correlation. 

III. A STOCHASTIC COMPUTING ARCHITECTURE  

A. Parameter Setting 
Considering (1), an SC architecture for the Phansalkar 

algorithm relates to: 1) the parameters q, p, and k; and 2) a 
selected window size W×W. 

The algorithm for finding the best parameters q, p, and k, and 
window size W×W is described in Algorithm 1. The input 
images are a dozen gray-scale images and the outputs are the 
desired parameters [25, 26]. The mean value of pixels of 8-bit 
grayscale images is 128, which has to be scaled down to 0.5 in 
SC because all pixel values are scaled down from [0, 255] to [0, 
1]. Assume that the exponent of the exponential term -q·m(x, y) 
in (1) is -5 since e-q·m(x, y)=e-5=0.0067, which is small enough 
and considered a 0. The resulting absolute error from e-5 is only 
0.0067, compared to 0. If setting e-q·m(x, y)=e-4, the absolute error 
is about 0.0183, which is about 2.72 times larger than that of e-5. 
On the other hand, if e-q·m(x, y)=e-6, the related stochastic 
implementation of this function will be more complicated, as 
can be seen later. For a mean value of 0.5, therefore, q=10 will 
be used in the SC architecture for the Phansalkar algorithm. 
Thus, the local mean values less than 0.5 will have an effect on 
the computation of local thresholds. When the local mean 
values are larger than 0.5, the effect of the exponential term in 
(1) is diminishing. This can also be seen from the convergence 
in Fig. 1. The parameter p determines the magnitude of the 
exponential term influencing the thresholds. When p is within 
[0, 1], the Phansalkar and Sauvola algorithms achieve almost 
the same results; when p is greater than 5, the thresholds are too 
high and more background pixels will be classified as the 

TABLE II 
PSNR, MSE, MAXERR, AND L2RAT FOR DIFFERENT P VALUES 

p PSNR MSE MAXERR L2RAT 
2 7.0856 13835.45 240 3.2122 
3 6.9174 14523.11 241 3.3439 
4 6.7853 15023.31 241 3.4170 
5 6.6883 15377.30 242 3.4512 

 
TABLE III 

PSNR, MSE, MAXERR, AND L2RAT FOR DIFFERENT K VALUES 

k PSNR MSE MAXERR L2RAT 
0.2 7.0856 13835.45 240 3.2122 
0.3 6.9174 14523.11 241 3.3439 
0.4 6.7853 15023.31 241 3.4170 
0.5 6.6883 15377.30 242 3.4512 

 

 
Fig. 2.  (a) Original degraded document image. (b) 3×3, (c) 5×5, (d) 7×7, and 
(e) 9×9 window sizes using the Phansalkar algorithm. 
 

TABLE IV 
THE MSES (×10-4) OF THE PHANSALKAR ALGORITHM FOR DIFFERENT 

WINDOW SIZES 

Algorithm 3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Phansalkar 1.30 1.23 1.20 1.19 1.18 1.18 1.16 

 

Algorithm 1 Algorithm for Finding Best Parameters q, p, and k, and window 
size W×W for the Phansalkar Algorithm 
Input: 8-bit grayscale images, n (an odd number) 
Output: Parameters q, p, and k, and window size W×W 
for q=1 to 15 do 
AE=exp(-0.5q)<0.01 then break; 
for i=1 to n do 
    W=2i+1; 

for k=0.2 to 0.5 do 
for p=2 to 5 do 

            PSNR=psnr; 
            MSE=mse; 
            MAXERR=maxerr; 
            L2RAT=l2rat; 
[p, k, W]=find(max(PSNR), min(MSE), min(MAXERR), min(L2RAT)) 
 



 

foreground, or vice versa [4]. A dozen gray-scale images are 
tested to measure the PSNR, MSE, MAXERR, and L2RAT 
using the command ‘measerr’ in MATLAB [25]. Experimental 
results show that p=2 provides the best performance in terms of 
the four metrics, as listed in TABLE II. In the same way as 
determining the parameter p, the parameter k is within [0.2, 0.5], 
and the experimental results show that k=0.2 reaches the best 
efficiency in terms of the four metrics, as listed in TABLE III. 

The quality of binarized images processed by the Phansalkar 
algorithm also depends on a predefined window size. An 
oversized window would not significantly improve the 
processed image quality, even at the cost of additional 
hardware resources [19]. To verify the effect of window size on 
the quality of binarized images and determine an appropriate 
window size, the Phansalkar algorithm is evaluated using the 
binary method. Fig. 2(a) shows an original degraded image 
selected from the dataset document image binarization contest 
(DIBCO) [26]. Fig. 2(b), (c), (d), and (e) are respectively the 
images processed using the Phansalkar algorithm with 3×3, 5×5, 
7×7 and 9×9 window sizes. According to TABLE IV, the MSEs 
of the Phansalkar algorithm decrease as the window size 
increases. The downtrend of the MSEs becomes slower when 
the window size exceeds 7×7. To balance hardware costs and 
computing accuracy, a 7×7 window size is chosen in this work. 

B. Formulation 
To build the SC architecture for the Phansalkar algorithm, all 

pixel values must be scaled down from [0, 255] to [0, 1]. All 
generated results have also to be limited within [0, 1]. Thus, the 
maximum pixel value of the standard deviation R is 1 and the 
mean value of pixels is 0.5 in SC. According to these defined 
parameters above, the realized function for the Phansalkar 
algorithm is 

 ( ) ( ) ( ) ( )( )10 , 1, , 1 2 , 1
5

m x yT x y m x y e s x y− ′ = ⋅ + + −  
. (3) 

Note that, the maximum value of the thresholds computed by 
(3) is 3, so a factor of 1/3 has to be added to this function to 
scale down computed results within [0, 1]. Thus, the proposed 
SC function for the Phansalkar algorithm is 

 ( ) ( ) ( ) ( )10 ,2 1 4, , ,
3 15 15

m x yT x y m x y e s x y− = ⋅ + +  
. (4) 

C. The Overall Architecture 
With the proposed SC function for the Phansalkar algorithm 

(4), it has to be transformed into a format that can be 

implemented through stochastic components. The computation 
of the threshold relates to the multiplication of a local mean 
value m(x, y) and a term in the square bracket in (4), which can 
be realized through an AND gate. The local mean value m(x, y) 
can be computed by using multi-input MUX-based stochastic 
mean circuits or other methods relating to correlated bitstreams 
as [17, 18, 27]. 

The point in (4) is the terms in the square bracket, which 
contains the addition of three terms and the computation of the 
standard deviation and exponential function. The addition 
needs at least two MUX-based scaled adders to be cascaded, of 
which the input bitstreams are e-10m(x, y) and s(x, y), and other 
select and input bitstreams are to be configured as follows. 
Assume the select and input bitstreams of the first scaled adder 
are s1, c, and s(x, y). Its output f1 is fed into the second adder 
with select s2 and input bitstreams e-10m(x, y), generating an 
output f2 as shown in Fig. 3. Thus, we have 
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Taking both (4) and (5) into consideration, we have an 
equation group containing three equations, as 

 ( )
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Thus, s2=2/3, s1=1/5, and c=1. With these computed 
constants, the proposed SC function for the Phansalkar 
algorithm (4) can be modified to 

 
( )

( ) ( ) ( )10 ,

,

2 2 1 1, 1 , 1 1
3 3 5 5

m x y

T x y

m x y e s x y−

=

     ⋅ + − ⋅ + − ⋅     
     

. (7) 

According to (7), the proposed SC architecture for the 
Phansalkar algorithm is shown in Fig. 4, where z1, z2, …, and z49 
are input pixels in a 7×7 window and T(z) is the computed 
threshold. It mainly consists of two 49-to-1 stochastic mean 
circuits (SMC49_1s), a stochastic unipolar subtractor (USUB), 

 
Fig. 3.  The addition of three terms in (4). 
  

Fig. 4.  The proposed stochastic computing architecture for the Phansalkar 
algorithm. 
 



 

a stochastic square root circuit (SQRT), and a stochastic 
exponential circuit (SEXP). The SC architecture works as 
follows. The SMC49_1s are respectively used to generate the 
mean value m(z) of 49 input bitstreams z1, z2, …, and z49, and 
the mean value m(z2) of 49 squared input bitstreams 

2 2 2
1 2 49,  ,  ,  and z z z . The mean value m(z) is delayed by one 

clock cycle and passed through an AND gate to generate m2(z). 
The results m2(z) and m(z2) are then passed through the USUB 
and SQRT to compute the standard deviation s(z) of 49 
neighboring pixel values. The mean value m(z) is also 
processed through the SEXP to compute the exponential term 
e-10m(z). The result is then imported into the scaled adders, along 
with the standard deviation s(z). The result of the last scaled 
adder is multiplied by the mean value m(z) to compute the 
threshold T(z). Four main stochastic components including the 
SMC49_1, USUB, SQRT, and SEXP are described as follows.  

D. A Stochastic Mean Circuit (SMC) 
An SMC is to average the sum of its input bitstreams by 

dividing their count, which has been mainly designed through 
cascaded MUXs by controlling their select bitstreams, as in 
[18]. However, while the input bitstreams can be correlated, 
multiple uncorrelated select bitstreams have to be generated, 
which will incur large hardware costs. We have demonstrated 
in [17, 27] that positively correlated input bitstreams can be 
averaged through a very simple stochastic component to realize 
a high computing accuracy. In this work, the method in [17] is 
used to design the required SMC to average 49 input bitstreams 
in a 7×7 window (Abbreviated as SMC49_1), as shown in Fig. 
5(a). Fig. 5(b) is the symbol for simplicity. In this design, 1/49, 
2/49, …, and 49/49 are generated through sharing the same 
SSG, of which the bitstreams are positively correlated [17]. 
Thus, each output of an XOR gate with positively correlated 
input bitstreams, performing absolute subtraction, is 1/49. In 

addition, the 49 input bitstreams are produced through another 
direct vector array (DVA) for the SSG [22]. The input 
bitstreams and those of 1/49 are uncorrelated theoretically. 
Thus, each output of an AND gate is the multiplication of zi and 
1/49 (1≤i≤49), which is negatively correlated as demonstrated 
in [17]. They are summed through an OR gate with negatively 
correlated bitstreams to perform (z1+z2+…+z49)/49 at last. The 
MSEs for the designed SMC49_1 using an SSG are shown in 
Fig. 6. The MSE reaches 2.56×10-4 using an 8-bit SSG. 

E. A Unipolar Subtractor (USUB) 
The standard deviation s(z) of the threshold is (m(z2)-m(z)2)0.5, 

for which a nonscaled unipolar subtractor (USUB) is used. 
From the theorem [28], it is known that m(z2)≥m(z)2. A unipolar 
to bipolar subtractor has been proposed in [29], but it is a scaled 
subtractor. A counter-based scaled unipolar absolute subtractor 
has also been proposed in [30]. Both of the results for these two 
subtractors are scaled by a factor of 1/2, which will decrease the 
computing accuracy that applications need.   

Before the introduction of nonscaled subtractors, it is 
beneficial to detail the stochastic integrator [6, 31, 32], as 
shown in Fig. 7(a), where x, y, and f are input and output 
bitstreams. Fig. 7(b) is the symbol. The integrator consists of an 
up/down counter and a D/S converter containing an RNG and a 
comparator. The n-bit counter stores an initial value c0, which is 
increased by 1 if xi=1 and yi=0, decreased by 1 if xi=0 and yi=1, 
or stays unchanged at clock cycle i. The resulting value c is 
compared with a random number R in the RNG to generate a 1 

 
Fig. 7.  (a) A stochastic integrator. (b) Symbol. (c) An adaptive digital element. 
(d) A stochastic divider. 
 

 
Fig. 8.  USUBNOR [33]. (a) Schematic. (b) Enhanced USUBNOR. 
 

 
Fig. 9.  USUBs. (a) USUBIt [33]. (b) USUBDiv [33]. (c) The proposed USUB. 
 

 
Fig. 5.  The designed SMC49_1. (a) Schematic. (b) Symbol. 
 

 
Fig. 6.  The MSEs of the designed SMC49_1 for different bit widths of SSGs. 
 



 

with a probability of c/2n. The stochastic integrator functions 
𝑓𝑓 = 𝑐𝑐0 + 1

2𝑛𝑛
∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑘𝑘−1
𝑖𝑖=0 , after k clock cycles. The integrator 

with a feedback loop can be used as an adaptive digital element 
(ADDIE) to estimate the probability of its input bitstream [6, 31, 
32], as shown in Fig. 7(c). An important application of the 
stochastic integrator is the stochastic divider, by looping the 
output bitstream through an AND gate [6], as shown in Fig. 
7(d). The stochastic divider implements f=x/y (Assume x≤y) 
when an equilibrium state is reached in the up/down counter 
[31]. Experimental results have shown that the equilibrium 
state can only be realized through looping the input bitstreams 
repeatedly, which will take a much longer computation time for 
applications using this divider.  

Two types of nonscaled unipolar subtractors have been 
designed in [33]. The first one, denoted as USUBNOR, is based 
on a NOR gate, as shown in Fig. 8(a). The output f can be 
written as 

 
( ) ( )( )

( )
1 2 1 2
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1

f x x x x

x x x x

= − − + − − ⋅

= − + − ⋅
, (8) 

where x1, x2, and f are input and output bitstreams, and x1 and x2 
are uncorrelated. It is a feasible approximation of x1-x2, if x1 is 
large enough and x2 is very small. The computing accuracy can 
be improved by adding an enhancement unit as shown in the 
dashed box in Fig. 8(b), where a D flip flop (DFF) is for 
decorrelation. The output f in Fig. 8(b) is written as 
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= − + − ⋅ − ⋅ −

. (9) 

Thus, comparing (9) with (8), the enhancement unit can 
decrease the error to some extent. Thus, a unipolar subtractor 
using iterative enhancement units, denoted as USUBIt, can be 
designed in this way, as shown in Fig. 9(a). However, it has the 
disadvantage that many iterative enhancement units have to be 
used to obtain a high computing accuracy.  

The second one, named USUBDiv, has been designed using 
the stochastic divider in Fig. 7(d) based on the stochastic 
integrator [33]. The circuit structure is shown in Fig. 9(b), 
where the output z is z=x2/x1, assuming x2≤x1. Thus, the output f 
is 
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1
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1 xf x
x

x x

 
= − ⋅ 

 
= −

. (10) 

Its disadvantage is that it consumes many loops and a large 
area to reach a high accuracy because of the D/S converter. 

In this paper, a nonscaled USUB composed of an up/down 
counter and a comparator is proposed, as shown in Fig. 9(c). 
Assume that the bitstreams x1 and x2 are unipolar and x2≤x1. The 
up/down counter increases by 1 in each clock cycle when w<x2, 
while the up/down counter decreases by 1 if w>x2. The up/down 
counter reaches an equilibrium state when x2=w, which 

 
Fig. 13.  The computed results for the three USUBs as a function of x2 for 
different values of x1 using 8-bit SSGs. (a) x1=0.3. (b) x1=0.7. 
 

TABLE V 
THE HARDWARE COSTS OF THE THREE USUBS USING 8-BIT SSGS 

Design Area Power CPD ADP PDP 
USUBIt 542.78 0.05685 1.44 781.61 0.0819 

USUBDiv 416.30 0.03235 1.44 599.48 0.0466 
Proposed 364.97 0.02657 1.44 525.56 0.0383 

Area: um2; Power: mW; CPD: ns; ADP: μm2∙ns; PDP: mW∙ns. 
 

 
Fig. 10.  The MSEs of the USUBIt for different numbers of iterative 
enhancement units. 
 

 
Fig. 11.  The MSEs of the USUBDiv for different numbers of loops. 
 

 
Fig. 12.  The MSEs of the three USUBs for different bit widths of SSGs. 
 



 

indicates the output of the up/down counter is c=x2=w. The 
output c=x2=w of the up/down counter is compared to 0 to 
generate a 1 if the value is greater than 0 and a 0 otherwise. This 
means the output of the comparator is 1 with a probability of 
c=x2=w. That is, the output of the comparator is z=c=x2=w in 
this stable state. In addition, since w=x1∙z, the output z will 
converge to z=x2/x1. Therefore, the output f of the proposed 
USUB is 

 
2

1
1

1 2

1 xf x
x

x x

 
= − ⋅ 

 
= −

. (11) 

The computing accuracy of the proposed USUB and existing 
USUBIt and USUBDiv is evaluated by using the MSE, where 
two input bitstreams are generated by different DVAs for an 
SSG. Fig. 10 shows the MSEs of the USUBIt for different 
numbers of iterative enhancement units, using 4-, 5-, …, and 
10-bit SSGs. It is concluded that when the number of iterative 
enhancement units reaches 6, the MSEs stabilize. Thus, the 
USUBIt with 6 iterative enhancement units is used later. The 
MSEs of the USUBDiv for different numbers of loops are shown 
in Fig. 11, using 4-, 5-, …, and 10-bit SSGs. The number of 
loops means the number of repetitions that input bitstreams are 
repeatedly computed. The USUBDiv needs at least 6 loops to 
reach a stable MSE. However, the clock delay of this design is 6 
times longer than a design with one loop. Thus, the number of 
loops is set to 1 for further consideration. 

Fig. 12 shows the MSEs of the three USUBs for different bit 
widths of SSGs. The USUBDiv with one loop produces the 
largest MSEs, resulting in the worst computing accuracy. The 
proposed USUB provides slightly lower MSEs than the USUBIt. 
This can also be seen from the plots for the three USUBs as a 
function of x2 for different values of x1 in Fig. 13 using 8-bit 
SSGs, where the values of x1 are given as 0.3 and 0.7. The 
errors of the USUBDiv with one loop are the largest regardless 
of the values of x1. The proposed USUB almost obtains the 
exact results, while the USUBIt reaches large or small errors for 
x1=0.3 or x1=0.7, respectively. 

The hardware costs of the three USUBs using 8-bit SSGs are 
listed in TABLE V, including area, power, critical path delay 
(CPD), area-delay product (ADP), and power-delay product 
(PDP). The proposed USUB has the same CPD as the USUBIt 
and USUBDiv. The ADP and PDP are respectively reduced by 
up to 17.81% and 53.24%, compared to those of the USUBIt. 
These metrics of the proposed USUB are respectively reduced 
by about 12.09% and 32.57%, compared to those of the 
USUBDiv. 

F. A Stochastic Square Root Circuit (SQRT) 
The standard deviation s(z)=(m(z2)-m(z)2)0.5 of the threshold 

relates to the stochastic square root (SQRT) function. 
SQRTSR: A shift register (SR) based SQRT abbreviated as 

SQRTSR has been designed in [34], as shown in Fig. 14(a). The 
left MUX realizes scaled addition as 
 ( )5 51 1f n x n= ⋅ − + ⋅ , (12) 
where x and f are input and output bitstreams, and n5 is the 
select. The SR consisting of a DFF and the neighboring MUX is 

the division kernel, which realizes n1/n4 in an equilibrium state 
[35]. That is, 

 1
5

4

nn
n

= , (13) 

where n1 is the input connected to the pin ‘1’ of the MUX and n4 
is the select. The DFF and the inverter make up a random 
number source to provide a value of 1/2. Thus, n1=n3=1/2. 
According to the definition of SCC (2), δ(n1,n2) is  

 
( )

1 2 1 2

1 3 1 3

1 3

1 2, n n n n

n n f n n f

n n f

n n p p p

p p p

p p

δ = −

= −

= −

. (14) 

Further, since 
 

3 3 1
1n f n np p p≤ = − , (15) 

 ( )1 3
max 1,0 0n n fp p+ − = . (16) 

Thus, the SCC between n1 and n2 is -1. The OR gate with 
negatively correlated bitstreams performs the addition of n1 and 
n2 as 
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= +

= + ⋅
. (17) 

Taking (13) into consideration, we have 

 5
1

1
n

f
=

+
. (18) 

Take (18) into (12), we have f=x0.5 for the SQRTSR. 
SQRTJK: A JK flip flop (JKFF) based SQRT denoted as 

SQRTJK has been proposed [36], as shown in Fig. 14(b). Its 
working principle is that the output of an SQRT is always 
greater than or equal to its input. The JKFF performs stochastic 
division as 

 jq
j k

=
+

, (19) 

where j, k, and q are the input and output bitstreams of the JKFF. 
If j=1, q equals 1/(1+k). As for the MUX, it performs scaled 
addition as 
 ( )1 1f q xq= ⋅ − + , (20) 
where q is the select of the MUX in Fig. 14(b), and x and f are 
input and output bitstreams. Take (19) into (20), we have 

 
Fig. 14.  SQRTs. (a) SQRTSR [34]. (b) SQRTJK [36]. (c) The proposed SQRT. 
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Thus, f=x0.5 for the SQRTJK. 
The proposed SQRT: Fig. 14(c) shows the proposed SQRT. 

The output of the MUX is 
 ( )1 1f q xq= ⋅ − + , (22) 
where q is the output of the right DFF and thus q=(1-f)/(1-x). 
For simplicity, five nodes n1, n2, n3, n4, and n5 are marked in Fig. 
14(c). The values of nodes n3, n4, and n5 equals 1-q, 1-f, and q, 
respectively. Since the AND gate with uncorrelated input 
bitstreams realizes multiplication, the value of node n1 can be 
computed as 
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1 4 5

1
n n n

f q
= ⋅

= − ⋅
. (23) 

The computation of node n2 relies on the SCC between the 
bitstreams of nodes n1 and n3. According to (2), δ(n1,n3) is 
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where 1-f means the inversion of f. Since 

 ( )
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1

1 1
QQ f

QQ f Q Q

p p

p p p p
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≤
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, (25) 

we have 
 ( )( )1max 1,0 0Q f Qp p− + − = . (26) 

Thus, the SCC between nodes n1 and n3 is -1, which indicates 
the bitstreams of nodes n1 and n3 are negatively correlated. 
With this support, the OR gate with negatively correlated 
bitstreams realizes the addition of n1 and n3, that is 
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1 1
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f q q
= +

= − ⋅ + −
. (27) 

Since a DFF is just a buffer, n5=q=n2. According to (22) and 
(27), we have  

 1 1
1 1

fq
x f

−
= =

− +
. (28) 

Thus, the proposed SQRT computes f=x0.5. 
Fig. 15 shows the trends of the MSEs of the proposed SQRT 

for different numbers of DFFs, using different bit widths of 
SSGs and LFSRs. The insertion of a reasonable number of 
DFFs significantly affects the computing accuracy of the 
proposed SQRT. For example, ultra-high MSEs are reached if 
10 DFFs are inserted. Taking both accuracy and hardware costs 
into consideration, a DFF is adopted in the proposed SQRT.  

The computing accuracy of the proposed SQRT and existing 
SQRTSR and SQRTJK are compared via the MSE, as shown in 
Fig. 16, using 8-bit SSGs and LFSRs, respectively. The 
proposed SQRT outperforms the SQRTSR having the largest 
MSEs and the SQRTJK ranking second in two cases. However, 

since SSGs generating dependent random numbers are more 
suitable for stochastic combinational logic circuits and 
integrators than circuits using looped flip flops, the trends of the 
MSEs seem to be counterintuitive for the designs using SSGs, 
but they are normal, as demonstrated in [22]. This abnormality 
can also be seen from the plots for the three SQRTs using 8-bit 
SSGs and LFSRs in Fig. 17, where hard-threshold functions for 
the three SQRTs using SSGs are created. All the designs using 
8-bit SSGs deviate from the exact results more than those using 
8-bit LFSRs. The proposed SQRT using LFSRs is closer to the 
exact results compared to the SQRTSR and SQRTJK. 

 
Fig. 15.  The trends of the MSEs of the proposed SQRT for different numbers 
of DFFs. (a) SSG. (b) LFSR. 
 

 
Fig. 16.  The MSEs of the three SQRTs for different bit widths of SNGs. (a) 
SSG (b) LFSR. 
 

 
Fig. 17.  The computed results for the three SQRTs using 8-bit SNGs. (a) SSG. 
(b) LFSR. 
 

TABLE VI 
THE HARDWARE COSTS OF THE THREE SQRTS USING 8-BIT SSGS 

Method Area Power CPD ADP PDP 
SQRTSR 210.09 0.01732 1.12 235.30 0.0188 
SQRTJK 203.04 0.01634 1.15 233.49 0.0194 
Proposed 207.45 0.01710 1.15 238.56 0.0197 

Area: μm2; Power: mW; CPD: ns; ADP: μm2∙ns; PDP: mW∙ns. 
 



 

The hardware costs of the three SQRTs using 8-bit SSGs are 
listed in TABLE VI. The proposed SQRT is slightly weaker 
than the other two designs since a DFF is inserted to increase 
computing accuracy. 

G. A Stochastic Exponential Circuit (SEXP) 
Stochastic exponential circuits (SEXPs) have been realized 

through truncated Maclaurin series expansion and Horner’s 
rule [37]. A method using correlated bitstreams has also been 
studied for implementing SEXPs in [15]. However, a 
correlation manipulation circuit has to be used if employing this 
method in an intermediate stage in a stochastic circuit [20], 
which will increase hardware costs. Since the SEXPs using 
truncated Maclaurin series expansion and Horner’s rule show 
better performance than those using correlation [15], Bernstein 
polynomials [38], and finite state machines (FSMs) [23, 39, 40], 
the method of designing the SEXPs in [37] is used in this paper. 

The Maclaurin series expansion of an exponential function e-ax 
(denoted as SEXPa) is 
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where 0<a≤1. Its 4th-order truncated Maclaurin series 
expansion using Horner’s rule is  

 

2 3 4
2 3 41

2! 3! 4!

1 1 1 1
2 3 4

ax a a ae ax x x x

ax ax axax

− ≈ − + − +

   = − − − −   
   
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Fig. 18 shows the schematic of the SEXPa (0<a≤1) using 
4th-order truncated Maclaurin series expansion and Horner’s 
rule. The input bitstream is generated by comparing original 
random numbers from an RNG with input values, while the 
coefficient bitstreams are produced by sharing delayed random 
numbers and then comparing delayed numbers with 
coefficients, as suggested in [37]. Since there are several 
coefficient bitstreams to be generated, DFFs in every stage are 
inserted for decorrelation. In addition, a DFF is also inserted in 
each stage to decorrelate the correlation of the input bitstream. 
Each stage is computed to realize (30) as follows according to 
the method in [41], where the impact of the DFFs inserted 
should be considered comprehensively. For the first stage, 
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where a DFF is inserted to decorrelate the correlation between x 
and a/4 and the values in the superscripts are the numbers of 
clock cycles delayed by random numbers or generated 
bitstreams. For example, 0 means the current clock cycle, and 1 
represents that each bit in the bitstreams a/4 is delayed by 1 
clock cycle. The second and third stages are computed as 
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Note that, the insertion of DFFs in this way in [37] incurs the 

correlations between x[1] and 
[ ]1

4
a , and between x[2] and 

[ ]2

3
a  in 

(32). The output f of Fig. 18 is computed as 
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Fig. 18.  The schematic of the SEXPa using 4th-order Maclaurin series 
expansion and Horner’s rule [37]. 
 

 
Fig. 19.  The MSEs of the SEXP1 for different orders. (a) SSG. (b) LFSR. 
 

 
Fig. 20.  The schematics of the SEXP10 using Maclaurin series expansion and 
Horner’s rule. (a) SEXP10_1 in [37]. (b) SEXP10_2 in [37]. (c) The proposed 
SEXP10. 
 



 

where the correlation between x[3] and 
[ ]3

2
a and the correlations 

between x[1] and 
[ ]1

4
a , and between x[2] and 

[ ]2

3
a introduce 

deviations from the exact results in (30). That is, the 
implementation in Fig. 18 approximately realizes the SEXPa 
(0<a≤1) using 4th-order truncated Maclaurin series expansion 
and Horner’s rule to approximate SEXPa (0<a≤1). By setting 
a=1 in (30), the exponential function e-x (denoted as SEXP1) is 
realized. Fig. 19 shows the MSEs of the SEXP1 with orders 
from 2 to 8, using different bit widths of SSGs and LFSRs. The 
design using a small bit width of RNG results in larger MSEs, 
such as the fluctuation of the MSEs generated by 4-bit SSGs 
and LFSRs. Generally, the SEXP1 with an order of 3 provides a 
good balance between computing accuracy and hardware costs 
in two cases, so it is used later. 

The required e-10x (denoted as SEXP10) in (7) can be 
rewritten as 

 ( )1010x xe e− −= . (34) 
Two stochastic implementations of (34) have been proposed 

in [37], as shown in Fig. 20(a) and (b), where e-x represents the 
output of the SEXP1. Eleven DFFs, two 2-input AND gates, 
and one 3-input AND gate are respectively used in both 

designs. 
An optimized implementation of the SEXP10 is proposed, as 

shown in Fig. 20(c), where seven DFFs, one 2-input AND gate, 
and two 3-input AND gates are used.  

Fig. 21 shows the MSEs of the three SEXP10s using 
different bit widths of SSGs. The MSEs of the proposed 
SEXP10 are lower than those of the SEXP10_1 and SEXP10_2. 
Thus, the proposed SEXP10 outperforms the SEXP10_1 and 
SEXP10_2 in computing accuracy. Fig. 22 presents the plots 
for the three 3rd-order SEXP10s using 8-bit SSGs. The 
computed results of the SEXP10_1 and SEXP10_2 overlap, 
while the proposed SEXP10 is closer to the exact results.  

TABLE VII lists the hardware costs of the three SEXP10s 
using 8-bit SSGs. The SEXP10_1 and SEXP10_2 use almost 
the same hardware resources, while the proposed design 
requires less costs than others in all respects. For example, the 
ADP and PDP of the proposed SEXP10 are respectively 
reduced by 14.42% and 15.79% on average compared to those 
of the SEXP10_1 and SEXP10_2. 

IV. EXPERIMENTAL RESULTS 
From the simulation results of the USUBs, SQRTs, and 

SEXPs, it is obvious that an SSG cannot provide sufficient 
computing accuracy for the SQRTs with feedback loops. Thus, 
an LFSR is used in evaluating the SC architecture for the 
Phansalkar algorithm. Take previous stochastic components 
into comparison in computing accuracy as follows. The 
USUBDiv with one loop provides much lower accuracy than the 
USUBIt and the proposed design, so it is not considered in 
comparison. In addition, since the SEXP10_1 and SEXP10_2 
share the same computing accuracy, the SEXP10_1 is 
compared with the proposed design. So, two SC architectures 
using previous stochastic components and an SC architecture 
using the proposed stochastic components for the Phansalkar 
algorithm are built as follows.  

Design_1: the USUBIt, SQRTSR, and SEXP10_1. 
Design_2: the USUBIt, SQRTJK, and SEXP10_1. 
Proposed: the proposed USUB, SQRT, and SEXP10. 
All three designs share the designed SMC49_1. 

A. Accuracy Comparison 
Fig. 23(a) shows the original degraded image, from DIBCO, 

to be processed using the Phansalkar algorithm [26]. Fig. 23(b) 
shows the image processed by using the original expression (1) 
in MATLAB to provide an exact result. Fig. 23(c), (d), (e), (f), 
(g), (h), and (i) are obtained by using the proposed SC 
architecture for the Phansalkar algorithm, respectively using 4-, 
5-, …, and 10-bit LFSRs. Fig. 24 shows the corresponding 
MSEs for the three SC architectures, which decrease as the bit 
widths of LFSRs increase. The Design_1 and Design_2 share 
almost the same MSEs, which are consistently larger than those 
of the proposed architecture. The proposed SC architecture 
with 6-bit LFSRs provides an MSE of 4.40×10-2, which is 
considered sufficient for the Phansalkar algorithm since an 
error of less than 5% is considered to be acceptable in many 
digital image processing algorithms [42]. 

 
Fig. 21.  The MSEs of the three SEXP10s for different bit widths of SSGs. 
 

 
Fig. 22.  The computed results for the three 4th-order SEXP10s using 8-bit 
SSGs. 
 

TABLE VII 
THE HARDWARE COSTS OF THE THREE SEXP10S USING 8-BIT SSGS 

Method Area Power CPD ADP PDP 
SEXP10_1 387.37 0.0302 1.00 387.37 0.0302 
SEXP10_2 387.37 0.0306 1.00 387.37 0.0306 
Proposed 361.44 0.0266 0.96 346.99 0.0256 

Area: μm2; Power: mW; CPD: ns; ADP: μm2∙ns; PDP: mW∙ns. 
 



 

B. Hardware Comparison 
TABLE VIII lists the hardware measurements of the three 

designs for the Phansalkar algorithm using 8-bit LFSRs and an 
8-bit binary design. Since the simplicity of the coordinate 
rotation digital computer (CORDIC) algorithm, it can be 
physically implemented by simple hardware through repeated 
shift-add operations and is regarded as an attractive and 
effective method for nonlinear functions [43]. The square root 
and exponential circuits in the 8-bit binary design of the 
Phansalkar algorithm are implemented using the CORDIC 
method in the hyperbolic coordinate through 16 iterations that 
are deemed to be sufficient enough generally [44, 45]. 
Experimental results show that the stochastic architecture 
requires much less area, CPD, and power than the binary design. 
For example, the SC design reduces ADP and PDP by 
approximately 98.43% and power by approximately 98.66% 
compared to the binary one. In addition, they are reduced by 
10.45% and 18.18% on average compared with the Design_1 
and Design_2. Note that the area in the proposed SC 
architecture includes all the D/S and S/D converters, such as 
LFSRs and a counter. 

V. CONCLUSION 
In this paper, an efficient stochastic computing (SC) 

architecture is proposed for the Phansalkar algorithm to 
binarize degraded images and to explore the feasibility of SC in 
lowering hardware costs. To this end, a stochastic mean circuit 
(SMC), a stochastic unipolar subtractor (USUB), a stochastic 
square root circuit (SQRT), and a stochastic exponential circuit 
(SEXP) are respectively designed. Experimental results show 
that the proposed components outperform previous stochastic 
designs and the proposed SC architecture achieves high 
computing accuracy with fewer hardware costs compared to the 
binary ones. However, the energy efficiency of stochastic 
components is also a problem until now compared to the binary 
designs. In addition, an SSG generally provides higher 
computing accuracy than an LFSR. Its application in stochastic 
components with feedback loops is up in the air and the 
selection of DVA significantly affects the accuracy of 
stochastic components, which will be deeply investigated 
further in our future works. 
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