

Abstract—Binarization plays a key role in image processing. Its

performance directly affects the success of subsequent character
segmentation and recognition. The Phansalkar algorithm
performs excellent in processing heavily degraded or poor-quality
images. However, this algorithm requires significant hardware
costs. In this paper, efficient stochastic computing (SC) function
and architecture are proposed for the Phansalkar algorithm.
Highly accurate stochastic elements are designed for this
architecture, including a stochastic mean circuit (SMC), a
stochastic unipolar subtractor (USUB), a stochastic square root
circuit (SQRT), and a stochastic exponential circuit (SEXP).
Simulation results show that the SC architecture using 64-bit
streams for the Phansalkar algorithm provides sufficient accuracy.
Physical implementation indicates the effectiveness of the
proposed architecture in lowering hardware costs for this
algorithm compared to the binary counterpart.

Index Terms—Image binarization, Phansalkar algorithm,
stochastic computing.

I. INTRODUCTION
INARIZATION is an initial step in some image analyses to
separate target areas from the background. It is a complex

task for heavily degraded or poor-quality images, which are
affected by factors such as non-uniform intensity, shadows,
smear, smudge, and low contrast. For example, confocal
images are often non-uniformly illuminated [1]. Therefore, an
effective image binarization algorithm is essential for
processing such images. Binarization is the process of finding
one or more ideal thresholds to divide pixels in an image into
two groups, namely (1) the foreground (including text,
characters, and shapes) and (2) the background (including
contextual surfaces). In general, the methods of image
binarization are classified as either global thresholding or local
thresholding. A global method searches for a threshold for an
entire image, which performs well for images with clear
separations between the foreground and the background, such

This work was supported in part by the Fundamental Research Funds for the

Central Universities of China under Grant JZ2020HGQA0162; and in part by
the Natural Sciences and Engineering Research Council (NSERC) of Canada
under Grant RES0048688. (Corresponding author: Guangjun Xie)

Yongqiang Zhang, Jiao Qin, and Guangjun Xie are with the School of
Microelectronics, Hefei University of Technology, Hefei 230009, China
(e-mail: ahzhangyq@hfut.edu.cn; 1540436201@qq.com;
gjxie8005@hfut.edu.cn)

Jie Han is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 1H9, Canada (e-mail:
jhan8@ualberta.ca)

as the Otsu algorithm [2]. However, such separations are
weakened in the images exposed to a gross environment. For
these cases, a local thresholding method aims at estimating a
threshold for each pixel based on its neighboring pixels, such as
the Sauvola and Bernsen algorithms [3, 4]. Local thresholding
methods have been widely employed for image analyses since
they produce better results even for severely degraded or
poor-quality images. The weighted binary implementations of
these binarization algorithms usually consume large hardware
costs and are highly susceptible to soft errors caused by cosmic
radiation or noises caused by process, voltage, and temperature
variations [5]. Tolerating these noises becomes increasingly
important as devices continue to scale down to the nano regime.

Stochastic computing (SC) has been initiated to lower
hardware costs for specific applications that can be designed
loosely [6, 7], such as image processing algorithms [8, 9],
neural networks [10, 11, 12, 13], and polynomial computation
[14, 15]. The applications of SC in image edge detection,
contrast stretching, filtering, segmentation, and sharpening
have been fully investigated by optimizing related stochastic
components, relating to finite-state machines, nonscaled adders,
mean circuits, and inner-product units [9, 16, 17]. In these
works, the superiority of the fault tolerance of stochastic
components to a variety of noises over weighted binary
counterparts has already been deeply demonstrated, by
injecting random bit flip errors into components. As for image
binarization, the Sauvola algorithm has been implemented by
using the designed stochastic mean circuits and comparators
[18]. In degraded or poor-quality images, the thresholds
computed by the Sauvola algorithm are generally very small, so
many foreground or background pixels are wrongly categorized

Design of A Stochastic Computing Architecture
for The Phansalkar Algorithm

Yongqiang Zhang, Member, IEEE, Jiao Qin, Jie Han, Senior Member, IEEE, and Guangjun Xie, Senior
Member, IEEE

B

Fig. 1. The thresholds of the Phansalkar and Sauvola algorithms for different
local means.

mailto:1540436201@qq.com

[3, 18]. For the Phansalkar algorithm [19], the thresholds are
much larger than those found by the Sauvola algorithm for a
small local mean, thus providing better performance in
binarizing images, as shown in Fig. 1. However, the weighted
binary implementation of this algorithm requires large
hardware resources.

To alleviate the issue that occurred in the implementation of
the Phansalkar algorithm, a novel architecture is proposed for
the algorithm in this paper to exploit the advantages of SC in
reducing hardware costs. To this end, the parameters including
q, p, and k, and window size W in the Phansalkar algorithm are
searched by using the simulation method. The peak signal to
noise ratio (PSNR), mean squared error (MSE), maximum
squared error (MAXERR), and ratio of squared norms (L2RAT)
using the command ‘measerr’ in MATLAB are used to measure
the best parameters. With these parameters, an SC function for
the algorithm is then formulated based on the basic stochastic
components. For example, a stochastic unipolar subtractor
(USUB), a stochastic square root circuit (SQRT), and a
stochastic exponential circuit (SEXP) are respectively proposed
to build the architecture for the Phansalkar algorithm, aiming at
a higher computing accuracy and lower hardware costs. All the
proposed stochastic components are evaluated using the MSE
for computing accuracy and physically synthesized using the
Design Compiler (DC) with a TSMC 40-nm gate library under
100 MHz frequency and typical design corners.

The main contributions of this paper are summarized as
follows. 1) A nonscaled USUB consisting of an up/down
counter and a comparator is proposed. Compared with the
previous one which is based on a stochastic divider and needs
multiple loops to generate stable results, the proposed USUB
computes results with lower MSEs in one loop and reduces
area-delay product (ADP) and power-delay product (PDP) by
12.09% and 32.57%, respectively. 2) An SQRT is proposed by
inserting a D flip flop to decorrelate the correlation to provide
higher computing accuracy by sacrificing some hardware costs
regarding a D flip flop. 3) An SEXP is proposed by saving three
D flip-flops while realizing lower MSEs than previous designs.
4) With these components, an SC function and architecture for
the Phansalkar algorithm are derived and built to provide an
MSE of 4.40×10-2, if using a 6-bit linear feedback shift register
(LFSR). The SC architecture reduces ADP and PDP by
approximately 98.43% and power by approximately 98.66%
compared to the binary design implemented using the
coordinate rotation digital computer (CORDIC) algorithm. The
proposed architecture surpasses the designs composed of
previous stochastic components in both hardware costs and

computing accuracy.
This work proceeds as follows. Section II introduces the

basic concepts of the Phansalkar algorithm and SC. Section III
presents the parameter setting, the formulated SC function, the
proposed SC architecture, and the proposed stochastic
components for the Phansalkar algorithm. Section IV illustrates
the experimental results. Section V concludes this paper.

II. BACKGROUND

A. Phansalkar Algorithm
For a pixel located at coordinates (x, y) and centered on a

W×W window (W is an odd number), the Phansalkar algorithm
computes its local threshold T(x, y) by using the local mean m(x,
y) and standard deviation s(x, y) of neighboring pixels [19], as

 () () () (), ,
, , 1 1q m x y s x y

T x y m x y p e k
R

− ⋅  
= ⋅ + ⋅ + ⋅ −  

   
, (1)

where k∈[0.2, 0.5], p and q are bias constants, and R is the
maximum value of the standard deviation (often 128 for 8-bit
gray-scale images) [19]. If the value of q is too large, the
exponential term becomes negligible, and (1) functions as the
Sauvola algorithm. The constant p determines the degree of the
effect of the exponential term on the computed thresholds. For a
very small p, the performance of this algorithm is almost the
same as the Sauvola algorithm. For a very large p, the threshold
becomes too high, and too many background pixels are
classified as the foreground. Thus, the values of q, p, and k are
key preconditions of an SC architecture for the Phansalkar
algorithm.

B. Stochastic Computing
SC is a re-emerging computing paradigm with the potential

to outperform the weighted binary computing in terms of
hardware efficiency and fault tolerance, because it relies on
logic operations on stochastic bitstreams. Stochastic bitstreams,
referred to as stochastic numbers (SNs), are generated by a
digital-to-stochastic (D/S) converter as listed in the 2nd column
in TABLE I, by comparing a given n-bit binary number B and a
random number R generated by a random number generator
(RNG) [20]. It produces a 1 or a 0 if B is larger or smaller than R
in each clock cycle to generate an SN with a length of 2n bits.
The RNG is usually a 2n-bit LFSR or Sobol sequence generator
(SSG), instead of a truly random number source [21].
Compared to pseudorandom numbers generated by an LFSR,
an SSG generates low-discrepancy numbers and generally
improves computing accuracy [22]. To convert an SN back to
its binary encoding format, a stochastic-to-digital (S/D)

TABLE I
STOCHASTIC COMPONENTS

Operation (a) D/S converter (b) S/D converter (b) Scaled addition (c) Addition (d) Addition (e) Multiplication (f) Division

Component

Function B→b b→B f=s∙x+(1-s)∙y f=x+y-x∙y f=x+y f=x∙y f=x/(x+y)
Correlation NA NA Uncorrelated Uncorrelated Negatively correlated Uncorrelated Uncorrelated

converter, for example, a counter, is employed to sum up each
bit in an SN, as in the 3rd column [23]. In the unipolar format,
the probability p of each bit being 1 in a bitstream equals the
corresponding binary number B within [0, 1], while the
probability p is (A+1)/2 in the bipolar format, where A is within
[-1, 1]. Since this work focuses on image binarization with
positive pixel values, we consider only the unipolar format later.
We use lowercases to indicate bitstreams, corresponding binary
values, and logic values for simplicity unless otherwise
specified. One can distinguish the represented meaning from
the context easily.

The multiplexer (MUX)-based scaled adder performs
f=s∙x+(1-s)∙y, where s is the select and has to be uncorrelated
with inputs x and y, and x and y can be correlated with each
other (In the 4th column). In addition, an OR gate with
uncorrelated or negatively correlated bitstreams respectively
performs f=x+y-x∙y or f=x+y (In the 5th and 6th columns). Thus, a
nonscaled adder can be designed through an OR gate by
manipulating the correlation. An AND gate performs f=x∙y if
bitstreams x and y are uncorrelated (In the 7th column). An
interesting stochastic component is the JK flip flop (JKFF),
which performs stochastic division x/(x+y) provided that the
uncorrelated input bitstreams are long enough (In the 8th
column).

As can be seen in TABLE I, the stochastic computing
correlation (SCC) significantly affects the performed function
for a stochastic component. The SCC value of two bitstreams x

and y is defined as [24]

 ()

()
() ()

()
()
() ()

,
, , 0

min ,

SCC , 0, , 0
,

, , 0
max 1,0

x y x y

x y x y

x y
x y

p p p p

x y x y
x y

x y
p p p p

δ
δ

δ
δ

δ


> −

= =

 <
 − + −

, (2)

where δ(x,y)=pxy-pxpy (pxy is the probability of the ANDed
results of x and y). A value of 0 means two bitstreams are
ideally independent, while a value of +1 or -1 respectively
indicates a maximally positive or negative correlation.

III. A STOCHASTIC COMPUTING ARCHITECTURE

A. Parameter Setting
Considering (1), an SC architecture for the Phansalkar

algorithm relates to: 1) the parameters q, p, and k; and 2) a
selected window size W×W.

The algorithm for finding the best parameters q, p, and k, and
window size W×W is described in Algorithm 1. The input
images are a dozen gray-scale images and the outputs are the
desired parameters [25, 26]. The mean value of pixels of 8-bit
grayscale images is 128, which has to be scaled down to 0.5 in
SC because all pixel values are scaled down from [0, 255] to [0,
1]. Assume that the exponent of the exponential term -q·m(x, y)
in (1) is -5 since e-q·m(x, y)=e-5=0.0067, which is small enough
and considered a 0. The resulting absolute error from e-5 is only
0.0067, compared to 0. If setting e-q·m(x, y)=e-4, the absolute error
is about 0.0183, which is about 2.72 times larger than that of e-5.
On the other hand, if e-q·m(x, y)=e-6, the related stochastic
implementation of this function will be more complicated, as
can be seen later. For a mean value of 0.5, therefore, q=10 will
be used in the SC architecture for the Phansalkar algorithm.
Thus, the local mean values less than 0.5 will have an effect on
the computation of local thresholds. When the local mean
values are larger than 0.5, the effect of the exponential term in
(1) is diminishing. This can also be seen from the convergence
in Fig. 1. The parameter p determines the magnitude of the
exponential term influencing the thresholds. When p is within
[0, 1], the Phansalkar and Sauvola algorithms achieve almost
the same results; when p is greater than 5, the thresholds are too
high and more background pixels will be classified as the

TABLE II
PSNR, MSE, MAXERR, AND L2RAT FOR DIFFERENT P VALUES

p PSNR MSE MAXERR L2RAT
2 7.0856 13835.45 240 3.2122
3 6.9174 14523.11 241 3.3439
4 6.7853 15023.31 241 3.4170
5 6.6883 15377.30 242 3.4512

TABLE III

PSNR, MSE, MAXERR, AND L2RAT FOR DIFFERENT K VALUES

k PSNR MSE MAXERR L2RAT
0.2 7.0856 13835.45 240 3.2122
0.3 6.9174 14523.11 241 3.3439
0.4 6.7853 15023.31 241 3.4170
0.5 6.6883 15377.30 242 3.4512

Fig. 2. (a) Original degraded document image. (b) 3×3, (c) 5×5, (d) 7×7, and
(e) 9×9 window sizes using the Phansalkar algorithm.

TABLE IV
THE MSES (×10-4) OF THE PHANSALKAR ALGORITHM FOR DIFFERENT

WINDOW SIZES

Algorithm 3×3 5×5 7×7 9×9 11×11 13×13 15×15
Phansalkar 1.30 1.23 1.20 1.19 1.18 1.18 1.16

Algorithm 1 Algorithm for Finding Best Parameters q, p, and k, and window
size W×W for the Phansalkar Algorithm
Input: 8-bit grayscale images, n (an odd number)
Output: Parameters q, p, and k, and window size W×W
for q=1 to 15 do
AE=exp(-0.5q)<0.01 then break;
for i=1 to n do
 W=2i+1;

for k=0.2 to 0.5 do
for p=2 to 5 do

 PSNR=psnr;
 MSE=mse;
 MAXERR=maxerr;
 L2RAT=l2rat;
[p, k, W]=find(max(PSNR), min(MSE), min(MAXERR), min(L2RAT))

foreground, or vice versa [4]. A dozen gray-scale images are
tested to measure the PSNR, MSE, MAXERR, and L2RAT
using the command ‘measerr’ in MATLAB [25]. Experimental
results show that p=2 provides the best performance in terms of
the four metrics, as listed in TABLE II. In the same way as
determining the parameter p, the parameter k is within [0.2, 0.5],
and the experimental results show that k=0.2 reaches the best
efficiency in terms of the four metrics, as listed in TABLE III.

The quality of binarized images processed by the Phansalkar
algorithm also depends on a predefined window size. An
oversized window would not significantly improve the
processed image quality, even at the cost of additional
hardware resources [19]. To verify the effect of window size on
the quality of binarized images and determine an appropriate
window size, the Phansalkar algorithm is evaluated using the
binary method. Fig. 2(a) shows an original degraded image
selected from the dataset document image binarization contest
(DIBCO) [26]. Fig. 2(b), (c), (d), and (e) are respectively the
images processed using the Phansalkar algorithm with 3×3, 5×5,
7×7 and 9×9 window sizes. According to TABLE IV, the MSEs
of the Phansalkar algorithm decrease as the window size
increases. The downtrend of the MSEs becomes slower when
the window size exceeds 7×7. To balance hardware costs and
computing accuracy, a 7×7 window size is chosen in this work.

B. Formulation
To build the SC architecture for the Phansalkar algorithm, all

pixel values must be scaled down from [0, 255] to [0, 1]. All
generated results have also to be limited within [0, 1]. Thus, the
maximum pixel value of the standard deviation R is 1 and the
mean value of pixels is 0.5 in SC. According to these defined
parameters above, the realized function for the Phansalkar
algorithm is

 () () () ()()10 , 1, , 1 2 , 1
5

m x yT x y m x y e s x y− ′ = ⋅ + + −  
. (3)

Note that, the maximum value of the thresholds computed by
(3) is 3, so a factor of 1/3 has to be added to this function to
scale down computed results within [0, 1]. Thus, the proposed
SC function for the Phansalkar algorithm is

 () () () ()10 ,2 1 4, , ,
3 15 15

m x yT x y m x y e s x y− = ⋅ + +  
. (4)

C. The Overall Architecture
With the proposed SC function for the Phansalkar algorithm

(4), it has to be transformed into a format that can be

implemented through stochastic components. The computation
of the threshold relates to the multiplication of a local mean
value m(x, y) and a term in the square bracket in (4), which can
be realized through an AND gate. The local mean value m(x, y)
can be computed by using multi-input MUX-based stochastic
mean circuits or other methods relating to correlated bitstreams
as [17, 18, 27].

The point in (4) is the terms in the square bracket, which
contains the addition of three terms and the computation of the
standard deviation and exponential function. The addition
needs at least two MUX-based scaled adders to be cascaded, of
which the input bitstreams are e-10m(x, y) and s(x, y), and other
select and input bitstreams are to be configured as follows.
Assume the select and input bitstreams of the first scaled adder
are s1, c, and s(x, y). Its output f1 is fed into the second adder
with select s2 and input bitstreams e-10m(x, y), generating an
output f2 as shown in Fig. 3. Thus, we have

() ()
() () () ()
() () () () ()

10 ,
2 2 2 1

10 ,
2 2 1 1

10 ,
2 2 1 2 1

1

1 , 1

1 , 1 1

m x y

m x y

m x y

f s e s f

s e s s s x y s c

s e s s s x y s s c

−

−

−

= ⋅ + − ⋅

= ⋅ + − ⋅ ⋅ + − ⋅  

= ⋅ + − ⋅ ⋅ + − ⋅ − ⋅

.(5)

Taking both (4) and (5) into consideration, we have an
equation group containing three equations, as

 ()

() ()

2

2 1

2 1

2
3
1 1

15
4 1 1

15

s

s s

s s c

=

= − ⋅

= − ⋅ − ⋅

. (6)

Thus, s2=2/3, s1=1/5, and c=1. With these computed
constants, the proposed SC function for the Phansalkar
algorithm (4) can be modified to

()

() () ()10 ,

,

2 2 1 1, 1 , 1 1
3 3 5 5

m x y

T x y

m x y e s x y−

=

     ⋅ + − ⋅ + − ⋅     
     

. (7)

According to (7), the proposed SC architecture for the
Phansalkar algorithm is shown in Fig. 4, where z1, z2, …, and z49
are input pixels in a 7×7 window and T(z) is the computed
threshold. It mainly consists of two 49-to-1 stochastic mean
circuits (SMC49_1s), a stochastic unipolar subtractor (USUB),

Fig. 3. The addition of three terms in (4).

Fig. 4. The proposed stochastic computing architecture for the Phansalkar
algorithm.

a stochastic square root circuit (SQRT), and a stochastic
exponential circuit (SEXP). The SC architecture works as
follows. The SMC49_1s are respectively used to generate the
mean value m(z) of 49 input bitstreams z1, z2, …, and z49, and
the mean value m(z2) of 49 squared input bitstreams

2 2 2
1 2 49, , , and z z z . The mean value m(z) is delayed by one

clock cycle and passed through an AND gate to generate m2(z).
The results m2(z) and m(z2) are then passed through the USUB
and SQRT to compute the standard deviation s(z) of 49
neighboring pixel values. The mean value m(z) is also
processed through the SEXP to compute the exponential term
e-10m(z). The result is then imported into the scaled adders, along
with the standard deviation s(z). The result of the last scaled
adder is multiplied by the mean value m(z) to compute the
threshold T(z). Four main stochastic components including the
SMC49_1, USUB, SQRT, and SEXP are described as follows.

D. A Stochastic Mean Circuit (SMC)
An SMC is to average the sum of its input bitstreams by

dividing their count, which has been mainly designed through
cascaded MUXs by controlling their select bitstreams, as in
[18]. However, while the input bitstreams can be correlated,
multiple uncorrelated select bitstreams have to be generated,
which will incur large hardware costs. We have demonstrated
in [17, 27] that positively correlated input bitstreams can be
averaged through a very simple stochastic component to realize
a high computing accuracy. In this work, the method in [17] is
used to design the required SMC to average 49 input bitstreams
in a 7×7 window (Abbreviated as SMC49_1), as shown in Fig.
5(a). Fig. 5(b) is the symbol for simplicity. In this design, 1/49,
2/49, …, and 49/49 are generated through sharing the same
SSG, of which the bitstreams are positively correlated [17].
Thus, each output of an XOR gate with positively correlated
input bitstreams, performing absolute subtraction, is 1/49. In

addition, the 49 input bitstreams are produced through another
direct vector array (DVA) for the SSG [22]. The input
bitstreams and those of 1/49 are uncorrelated theoretically.
Thus, each output of an AND gate is the multiplication of zi and
1/49 (1≤i≤49), which is negatively correlated as demonstrated
in [17]. They are summed through an OR gate with negatively
correlated bitstreams to perform (z1+z2+…+z49)/49 at last. The
MSEs for the designed SMC49_1 using an SSG are shown in
Fig. 6. The MSE reaches 2.56×10-4 using an 8-bit SSG.

E. A Unipolar Subtractor (USUB)
The standard deviation s(z) of the threshold is (m(z2)-m(z)2)0.5,

for which a nonscaled unipolar subtractor (USUB) is used.
From the theorem [28], it is known that m(z2)≥m(z)2. A unipolar
to bipolar subtractor has been proposed in [29], but it is a scaled
subtractor. A counter-based scaled unipolar absolute subtractor
has also been proposed in [30]. Both of the results for these two
subtractors are scaled by a factor of 1/2, which will decrease the
computing accuracy that applications need.

Before the introduction of nonscaled subtractors, it is
beneficial to detail the stochastic integrator [6, 31, 32], as
shown in Fig. 7(a), where x, y, and f are input and output
bitstreams. Fig. 7(b) is the symbol. The integrator consists of an
up/down counter and a D/S converter containing an RNG and a
comparator. The n-bit counter stores an initial value c0, which is
increased by 1 if xi=1 and yi=0, decreased by 1 if xi=0 and yi=1,
or stays unchanged at clock cycle i. The resulting value c is
compared with a random number R in the RNG to generate a 1

Fig. 7. (a) A stochastic integrator. (b) Symbol. (c) An adaptive digital element.
(d) A stochastic divider.

Fig. 8. USUBNOR [33]. (a) Schematic. (b) Enhanced USUBNOR.

Fig. 9. USUBs. (a) USUBIt [33]. (b) USUBDiv [33]. (c) The proposed USUB.

Fig. 5. The designed SMC49_1. (a) Schematic. (b) Symbol.

Fig. 6. The MSEs of the designed SMC49_1 for different bit widths of SSGs.

with a probability of c/2n. The stochastic integrator functions
𝑓𝑓 = 𝑐𝑐0 + 1

2𝑛𝑛
∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑘𝑘−1
𝑖𝑖=0 , after k clock cycles. The integrator

with a feedback loop can be used as an adaptive digital element
(ADDIE) to estimate the probability of its input bitstream [6, 31,
32], as shown in Fig. 7(c). An important application of the
stochastic integrator is the stochastic divider, by looping the
output bitstream through an AND gate [6], as shown in Fig.
7(d). The stochastic divider implements f=x/y (Assume x≤y)
when an equilibrium state is reached in the up/down counter
[31]. Experimental results have shown that the equilibrium
state can only be realized through looping the input bitstreams
repeatedly, which will take a much longer computation time for
applications using this divider.

Two types of nonscaled unipolar subtractors have been
designed in [33]. The first one, denoted as USUBNOR, is based
on a NOR gate, as shown in Fig. 8(a). The output f can be
written as

() ()()

()
1 2 1 2

1 2 1 2

1 1 1

1

f x x x x

x x x x

= − − + − − ⋅

= − + − ⋅
, (8)

where x1, x2, and f are input and output bitstreams, and x1 and x2
are uncorrelated. It is a feasible approximation of x1-x2, if x1 is
large enough and x2 is very small. The computing accuracy can
be improved by adding an enhancement unit as shown in the
dashed box in Fig. 8(b), where a D flip flop (DFF) is for
decorrelation. The output f in Fig. 8(b) is written as

() ()() ()
() ()() ()()

() ()()

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 1 1
1

1 1 1

1 1 1

x x x x x x
f

x x x x x x

x x x x x x

 − + − − ⋅ + − ⋅ −
 = −
 − + − − ⋅ ⋅ − ⋅ 

= − + − ⋅ − ⋅ −

. (9)

Thus, comparing (9) with (8), the enhancement unit can
decrease the error to some extent. Thus, a unipolar subtractor
using iterative enhancement units, denoted as USUBIt, can be
designed in this way, as shown in Fig. 9(a). However, it has the
disadvantage that many iterative enhancement units have to be
used to obtain a high computing accuracy.

The second one, named USUBDiv, has been designed using
the stochastic divider in Fig. 7(d) based on the stochastic
integrator [33]. The circuit structure is shown in Fig. 9(b),
where the output z is z=x2/x1, assuming x2≤x1. Thus, the output f
is

2

1
1

1 2

1 xf x
x

x x

 
= − ⋅ 

 
= −

. (10)

Its disadvantage is that it consumes many loops and a large
area to reach a high accuracy because of the D/S converter.

In this paper, a nonscaled USUB composed of an up/down
counter and a comparator is proposed, as shown in Fig. 9(c).
Assume that the bitstreams x1 and x2 are unipolar and x2≤x1. The
up/down counter increases by 1 in each clock cycle when w<x2,
while the up/down counter decreases by 1 if w>x2. The up/down
counter reaches an equilibrium state when x2=w, which

Fig. 13. The computed results for the three USUBs as a function of x2 for
different values of x1 using 8-bit SSGs. (a) x1=0.3. (b) x1=0.7.

TABLE V
THE HARDWARE COSTS OF THE THREE USUBS USING 8-BIT SSGS

Design Area Power CPD ADP PDP
USUBIt 542.78 0.05685 1.44 781.61 0.0819

USUBDiv 416.30 0.03235 1.44 599.48 0.0466
Proposed 364.97 0.02657 1.44 525.56 0.0383

Area: um2; Power: mW; CPD: ns; ADP: μm2∙ns; PDP: mW∙ns.

Fig. 10. The MSEs of the USUBIt for different numbers of iterative
enhancement units.

Fig. 11. The MSEs of the USUBDiv for different numbers of loops.

Fig. 12. The MSEs of the three USUBs for different bit widths of SSGs.

indicates the output of the up/down counter is c=x2=w. The
output c=x2=w of the up/down counter is compared to 0 to
generate a 1 if the value is greater than 0 and a 0 otherwise. This
means the output of the comparator is 1 with a probability of
c=x2=w. That is, the output of the comparator is z=c=x2=w in
this stable state. In addition, since w=x1∙z, the output z will
converge to z=x2/x1. Therefore, the output f of the proposed
USUB is

2

1
1

1 2

1 xf x
x

x x

 
= − ⋅ 

 
= −

. (11)

The computing accuracy of the proposed USUB and existing
USUBIt and USUBDiv is evaluated by using the MSE, where
two input bitstreams are generated by different DVAs for an
SSG. Fig. 10 shows the MSEs of the USUBIt for different
numbers of iterative enhancement units, using 4-, 5-, …, and
10-bit SSGs. It is concluded that when the number of iterative
enhancement units reaches 6, the MSEs stabilize. Thus, the
USUBIt with 6 iterative enhancement units is used later. The
MSEs of the USUBDiv for different numbers of loops are shown
in Fig. 11, using 4-, 5-, …, and 10-bit SSGs. The number of
loops means the number of repetitions that input bitstreams are
repeatedly computed. The USUBDiv needs at least 6 loops to
reach a stable MSE. However, the clock delay of this design is 6
times longer than a design with one loop. Thus, the number of
loops is set to 1 for further consideration.

Fig. 12 shows the MSEs of the three USUBs for different bit
widths of SSGs. The USUBDiv with one loop produces the
largest MSEs, resulting in the worst computing accuracy. The
proposed USUB provides slightly lower MSEs than the USUBIt.
This can also be seen from the plots for the three USUBs as a
function of x2 for different values of x1 in Fig. 13 using 8-bit
SSGs, where the values of x1 are given as 0.3 and 0.7. The
errors of the USUBDiv with one loop are the largest regardless
of the values of x1. The proposed USUB almost obtains the
exact results, while the USUBIt reaches large or small errors for
x1=0.3 or x1=0.7, respectively.

The hardware costs of the three USUBs using 8-bit SSGs are
listed in TABLE V, including area, power, critical path delay
(CPD), area-delay product (ADP), and power-delay product
(PDP). The proposed USUB has the same CPD as the USUBIt
and USUBDiv. The ADP and PDP are respectively reduced by
up to 17.81% and 53.24%, compared to those of the USUBIt.
These metrics of the proposed USUB are respectively reduced
by about 12.09% and 32.57%, compared to those of the
USUBDiv.

F. A Stochastic Square Root Circuit (SQRT)
The standard deviation s(z)=(m(z2)-m(z)2)0.5 of the threshold

relates to the stochastic square root (SQRT) function.
SQRTSR: A shift register (SR) based SQRT abbreviated as

SQRTSR has been designed in [34], as shown in Fig. 14(a). The
left MUX realizes scaled addition as
 ()5 51 1f n x n= ⋅ − + ⋅ , (12)
where x and f are input and output bitstreams, and n5 is the
select. The SR consisting of a DFF and the neighboring MUX is

the division kernel, which realizes n1/n4 in an equilibrium state
[35]. That is,

 1
5

4

nn
n

= , (13)

where n1 is the input connected to the pin ‘1’ of the MUX and n4
is the select. The DFF and the inverter make up a random
number source to provide a value of 1/2. Thus, n1=n3=1/2.
According to the definition of SCC (2), δ(n1,n2) is

()

1 2 1 2

1 3 1 3

1 3

1 2, n n n n

n n f n n f

n n f

n n p p p

p p p

p p

δ = −

= −

= −

. (14)

Further, since

3 3 1
1n f n np p p≤ = − , (15)

 ()1 3
max 1,0 0n n fp p+ − = . (16)

Thus, the SCC between n1 and n2 is -1. The OR gate with
negatively correlated bitstreams performs the addition of n1 and
n2 as

4 1 2

1 1
2 2

n n n

f

= +

= + ⋅
. (17)

Taking (13) into consideration, we have

 5
1

1
n

f
=

+
. (18)

Take (18) into (12), we have f=x0.5 for the SQRTSR.
SQRTJK: A JK flip flop (JKFF) based SQRT denoted as

SQRTJK has been proposed [36], as shown in Fig. 14(b). Its
working principle is that the output of an SQRT is always
greater than or equal to its input. The JKFF performs stochastic
division as

 jq
j k

=
+

, (19)

where j, k, and q are the input and output bitstreams of the JKFF.
If j=1, q equals 1/(1+k). As for the MUX, it performs scaled
addition as
 ()1 1f q xq= ⋅ − + , (20)
where q is the select of the MUX in Fig. 14(b), and x and f are
input and output bitstreams. Take (19) into (20), we have

Fig. 14. SQRTs. (a) SQRTSR [34]. (b) SQRTJK [36]. (c) The proposed SQRT.

1 1

1 11
1 1

1 11
1 1

j jf x
j k j k

x
k k

x
f f

 
= ⋅ − + ⋅ + + 

= − + ⋅
+ +

= − + ⋅
+ +

. (21)

Thus, f=x0.5 for the SQRTJK.
The proposed SQRT: Fig. 14(c) shows the proposed SQRT.

The output of the MUX is
 ()1 1f q xq= ⋅ − + , (22)
where q is the output of the right DFF and thus q=(1-f)/(1-x).
For simplicity, five nodes n1, n2, n3, n4, and n5 are marked in Fig.
14(c). The values of nodes n3, n4, and n5 equals 1-q, 1-f, and q,
respectively. Since the AND gate with uncorrelated input
bitstreams realizes multiplication, the value of node n1 can be
computed as

()

1 4 5

1
n n n

f q
= ⋅

= − ⋅
. (23)

The computation of node n2 relies on the SCC between the
bitstreams of nodes n1 and n3. According to (2), δ(n1,n3) is

()

() ()

()

1 3 1 31 3

11

1

, n n n n

Q fQ f Q Q

Q f Q

n n p p p

p p p

p p

δ

−−

−

= −

= −

= −

. (24)

where 1-f means the inversion of f. Since

 ()

()

1

1 1
QQ f

QQ f Q Q

p p

p p p p
−

−

≤

+ ≤ + =
, (25)

we have
 ()()1max 1,0 0Q f Qp p− + − = . (26)

Thus, the SCC between nodes n1 and n3 is -1, which indicates
the bitstreams of nodes n1 and n3 are negatively correlated.
With this support, the OR gate with negatively correlated
bitstreams realizes the addition of n1 and n3, that is

() ()

2 1 3

1 1
n n n

f q q
= +

= − ⋅ + −
. (27)

Since a DFF is just a buffer, n5=q=n2. According to (22) and
(27), we have

 1 1
1 1

fq
x f

−
= =

− +
. (28)

Thus, the proposed SQRT computes f=x0.5.
Fig. 15 shows the trends of the MSEs of the proposed SQRT

for different numbers of DFFs, using different bit widths of
SSGs and LFSRs. The insertion of a reasonable number of
DFFs significantly affects the computing accuracy of the
proposed SQRT. For example, ultra-high MSEs are reached if
10 DFFs are inserted. Taking both accuracy and hardware costs
into consideration, a DFF is adopted in the proposed SQRT.

The computing accuracy of the proposed SQRT and existing
SQRTSR and SQRTJK are compared via the MSE, as shown in
Fig. 16, using 8-bit SSGs and LFSRs, respectively. The
proposed SQRT outperforms the SQRTSR having the largest
MSEs and the SQRTJK ranking second in two cases. However,

since SSGs generating dependent random numbers are more
suitable for stochastic combinational logic circuits and
integrators than circuits using looped flip flops, the trends of the
MSEs seem to be counterintuitive for the designs using SSGs,
but they are normal, as demonstrated in [22]. This abnormality
can also be seen from the plots for the three SQRTs using 8-bit
SSGs and LFSRs in Fig. 17, where hard-threshold functions for
the three SQRTs using SSGs are created. All the designs using
8-bit SSGs deviate from the exact results more than those using
8-bit LFSRs. The proposed SQRT using LFSRs is closer to the
exact results compared to the SQRTSR and SQRTJK.

Fig. 15. The trends of the MSEs of the proposed SQRT for different numbers
of DFFs. (a) SSG. (b) LFSR.

Fig. 16. The MSEs of the three SQRTs for different bit widths of SNGs. (a)
SSG (b) LFSR.

Fig. 17. The computed results for the three SQRTs using 8-bit SNGs. (a) SSG.
(b) LFSR.

TABLE VI
THE HARDWARE COSTS OF THE THREE SQRTS USING 8-BIT SSGS

Method Area Power CPD ADP PDP
SQRTSR 210.09 0.01732 1.12 235.30 0.0188
SQRTJK 203.04 0.01634 1.15 233.49 0.0194
Proposed 207.45 0.01710 1.15 238.56 0.0197

Area: μm2; Power: mW; CPD: ns; ADP: μm2∙ns; PDP: mW∙ns.

The hardware costs of the three SQRTs using 8-bit SSGs are
listed in TABLE VI. The proposed SQRT is slightly weaker
than the other two designs since a DFF is inserted to increase
computing accuracy.

G. A Stochastic Exponential Circuit (SEXP)
Stochastic exponential circuits (SEXPs) have been realized

through truncated Maclaurin series expansion and Horner’s
rule [37]. A method using correlated bitstreams has also been
studied for implementing SEXPs in [15]. However, a
correlation manipulation circuit has to be used if employing this
method in an intermediate stage in a stochastic circuit [20],
which will increase hardware costs. Since the SEXPs using
truncated Maclaurin series expansion and Horner’s rule show
better performance than those using correlation [15], Bernstein
polynomials [38], and finite state machines (FSMs) [23, 39, 40],
the method of designing the SEXPs in [37] is used in this paper.

The Maclaurin series expansion of an exponential function e-ax
(denoted as SEXPa) is

()
0

2 3 4
2 3 4

!

1
2! 3! 4!

n
ax

n

ax
e

n
a a aax x x x

∞
−

=

−
=

= − + − + −

∑



, (29)

where 0<a≤1. Its 4th-order truncated Maclaurin series
expansion using Horner’s rule is

2 3 4
2 3 41

2! 3! 4!

1 1 1 1
2 3 4

ax a a ae ax x x x

ax ax axax

− ≈ − + − +

   = − − − −   
   

. (30)

Fig. 18 shows the schematic of the SEXPa (0<a≤1) using
4th-order truncated Maclaurin series expansion and Horner’s
rule. The input bitstream is generated by comparing original
random numbers from an RNG with input values, while the
coefficient bitstreams are produced by sharing delayed random
numbers and then comparing delayed numbers with
coefficients, as suggested in [37]. Since there are several
coefficient bitstreams to be generated, DFFs in every stage are
inserted for decorrelation. In addition, a DFF is also inserted in
each stage to decorrelate the correlation of the input bitstream.
Each stage is computed to realize (30) as follows according to
the method in [41], where the impact of the DFFs inserted
should be considered comprehensively. For the first stage,

 []
[]

[]
1

0 0
1 1

4
an x= − , (31)

where a DFF is inserted to decorrelate the correlation between x
and a/4 and the values in the superscripts are the numbers of
clock cycles delayed by random numbers or generated
bitstreams. For example, 0 means the current clock cycle, and 1
represents that each bit in the bitstreams a/4 is delayed by 1
clock cycle. The second and third stages are computed as

[]
[]

[] []

[]
[]

[]
[]

[]
[]

[] []

[]
[]

[]
[]

[]
[]

2
0 1 0

2 1

2 1
1 0

3
0 2 0

3 2

3 2 1
2 1 0

1
3

1 1
3 4

1
2

1 1 1
2 3 4

an x n

a ax x

an x n

a a ax x x

= −

 
= − −  

 

= −

  
= − − −      

. (32)

Note that, the insertion of DFFs in this way in [37] incurs the

correlations between x[1] and
[]1

4
a , and between x[2] and

[]2

3
a in

(32). The output f of Fig. 18 is computed as

[] [] [] []

[] []
[]

[]
[]

[]
[]

[]

0 4 3 0
3

3 2 1
4 3 2 1 0

1

1 1 1 1
2 3 4

f a x n

a a aa x x x x

= −

   
 = − − − −        

,(33)

Fig. 18. The schematic of the SEXPa using 4th-order Maclaurin series
expansion and Horner’s rule [37].

Fig. 19. The MSEs of the SEXP1 for different orders. (a) SSG. (b) LFSR.

Fig. 20. The schematics of the SEXP10 using Maclaurin series expansion and
Horner’s rule. (a) SEXP10_1 in [37]. (b) SEXP10_2 in [37]. (c) The proposed
SEXP10.

where the correlation between x[3] and
[]3

2
a and the correlations

between x[1] and
[]1

4
a , and between x[2] and

[]2

3
a introduce

deviations from the exact results in (30). That is, the
implementation in Fig. 18 approximately realizes the SEXPa
(0<a≤1) using 4th-order truncated Maclaurin series expansion
and Horner’s rule to approximate SEXPa (0<a≤1). By setting
a=1 in (30), the exponential function e-x (denoted as SEXP1) is
realized. Fig. 19 shows the MSEs of the SEXP1 with orders
from 2 to 8, using different bit widths of SSGs and LFSRs. The
design using a small bit width of RNG results in larger MSEs,
such as the fluctuation of the MSEs generated by 4-bit SSGs
and LFSRs. Generally, the SEXP1 with an order of 3 provides a
good balance between computing accuracy and hardware costs
in two cases, so it is used later.

The required e-10x (denoted as SEXP10) in (7) can be
rewritten as

 ()1010x xe e− −= . (34)
Two stochastic implementations of (34) have been proposed

in [37], as shown in Fig. 20(a) and (b), where e-x represents the
output of the SEXP1. Eleven DFFs, two 2-input AND gates,
and one 3-input AND gate are respectively used in both

designs.
An optimized implementation of the SEXP10 is proposed, as

shown in Fig. 20(c), where seven DFFs, one 2-input AND gate,
and two 3-input AND gates are used.

Fig. 21 shows the MSEs of the three SEXP10s using
different bit widths of SSGs. The MSEs of the proposed
SEXP10 are lower than those of the SEXP10_1 and SEXP10_2.
Thus, the proposed SEXP10 outperforms the SEXP10_1 and
SEXP10_2 in computing accuracy. Fig. 22 presents the plots
for the three 3rd-order SEXP10s using 8-bit SSGs. The
computed results of the SEXP10_1 and SEXP10_2 overlap,
while the proposed SEXP10 is closer to the exact results.

TABLE VII lists the hardware costs of the three SEXP10s
using 8-bit SSGs. The SEXP10_1 and SEXP10_2 use almost
the same hardware resources, while the proposed design
requires less costs than others in all respects. For example, the
ADP and PDP of the proposed SEXP10 are respectively
reduced by 14.42% and 15.79% on average compared to those
of the SEXP10_1 and SEXP10_2.

IV. EXPERIMENTAL RESULTS
From the simulation results of the USUBs, SQRTs, and

SEXPs, it is obvious that an SSG cannot provide sufficient
computing accuracy for the SQRTs with feedback loops. Thus,
an LFSR is used in evaluating the SC architecture for the
Phansalkar algorithm. Take previous stochastic components
into comparison in computing accuracy as follows. The
USUBDiv with one loop provides much lower accuracy than the
USUBIt and the proposed design, so it is not considered in
comparison. In addition, since the SEXP10_1 and SEXP10_2
share the same computing accuracy, the SEXP10_1 is
compared with the proposed design. So, two SC architectures
using previous stochastic components and an SC architecture
using the proposed stochastic components for the Phansalkar
algorithm are built as follows.

Design_1: the USUBIt, SQRTSR, and SEXP10_1.
Design_2: the USUBIt, SQRTJK, and SEXP10_1.
Proposed: the proposed USUB, SQRT, and SEXP10.
All three designs share the designed SMC49_1.

A. Accuracy Comparison
Fig. 23(a) shows the original degraded image, from DIBCO,

to be processed using the Phansalkar algorithm [26]. Fig. 23(b)
shows the image processed by using the original expression (1)
in MATLAB to provide an exact result. Fig. 23(c), (d), (e), (f),
(g), (h), and (i) are obtained by using the proposed SC
architecture for the Phansalkar algorithm, respectively using 4-,
5-, …, and 10-bit LFSRs. Fig. 24 shows the corresponding
MSEs for the three SC architectures, which decrease as the bit
widths of LFSRs increase. The Design_1 and Design_2 share
almost the same MSEs, which are consistently larger than those
of the proposed architecture. The proposed SC architecture
with 6-bit LFSRs provides an MSE of 4.40×10-2, which is
considered sufficient for the Phansalkar algorithm since an
error of less than 5% is considered to be acceptable in many
digital image processing algorithms [42].

Fig. 21. The MSEs of the three SEXP10s for different bit widths of SSGs.

Fig. 22. The computed results for the three 4th-order SEXP10s using 8-bit
SSGs.

TABLE VII
THE HARDWARE COSTS OF THE THREE SEXP10S USING 8-BIT SSGS

Method Area Power CPD ADP PDP
SEXP10_1 387.37 0.0302 1.00 387.37 0.0302
SEXP10_2 387.37 0.0306 1.00 387.37 0.0306
Proposed 361.44 0.0266 0.96 346.99 0.0256

Area: μm2; Power: mW; CPD: ns; ADP: μm2∙ns; PDP: mW∙ns.

B. Hardware Comparison
TABLE VIII lists the hardware measurements of the three

designs for the Phansalkar algorithm using 8-bit LFSRs and an
8-bit binary design. Since the simplicity of the coordinate
rotation digital computer (CORDIC) algorithm, it can be
physically implemented by simple hardware through repeated
shift-add operations and is regarded as an attractive and
effective method for nonlinear functions [43]. The square root
and exponential circuits in the 8-bit binary design of the
Phansalkar algorithm are implemented using the CORDIC
method in the hyperbolic coordinate through 16 iterations that
are deemed to be sufficient enough generally [44, 45].
Experimental results show that the stochastic architecture
requires much less area, CPD, and power than the binary design.
For example, the SC design reduces ADP and PDP by
approximately 98.43% and power by approximately 98.66%
compared to the binary one. In addition, they are reduced by
10.45% and 18.18% on average compared with the Design_1
and Design_2. Note that the area in the proposed SC
architecture includes all the D/S and S/D converters, such as
LFSRs and a counter.

V. CONCLUSION
In this paper, an efficient stochastic computing (SC)

architecture is proposed for the Phansalkar algorithm to
binarize degraded images and to explore the feasibility of SC in
lowering hardware costs. To this end, a stochastic mean circuit
(SMC), a stochastic unipolar subtractor (USUB), a stochastic
square root circuit (SQRT), and a stochastic exponential circuit
(SEXP) are respectively designed. Experimental results show
that the proposed components outperform previous stochastic
designs and the proposed SC architecture achieves high
computing accuracy with fewer hardware costs compared to the
binary ones. However, the energy efficiency of stochastic
components is also a problem until now compared to the binary
designs. In addition, an SSG generally provides higher
computing accuracy than an LFSR. Its application in stochastic
components with feedback loops is up in the air and the
selection of DVA significantly affects the accuracy of
stochastic components, which will be deeply investigated
further in our future works.

REFERENCES
[1] L. Nichele, V. Persichetti, M. Lucidi, and G. Cincotti, “Thresholding

algorithms for microbial cell counting,” in 21st International Conference
on Transparent Optical Networks (ICTON), Angers, France, 2019, pp.
1-4.

[2] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst. Man Cybern., vol. 9, no. 1, pp. 62-66, Jan. 1979.

[3] J. Sauvola, and M. Pietikäinen, “Adaptive document image binarization,”
Pattern Recognit., vol. 33, no. 2, pp. 225-236, Feb. 2000.

[4] J. Bernsen, “Dynamic thresholding of gray level image,” in International
Conference on Pattern Recognition, Berlin, Germany, 1986, pp.
1251-1255.

[5] J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, and F. Lombardi, “A
stochastic computational approach for accurate and efficient reliability
evaluation,” IEEE Trans. Comput., vol. 63, no. 6, pp. 1336-1350, Jun.
2014.

[6] B. Gaines, "Stochastic computing systems," Advances in information
systems science, Advances in information systems science J. Tou, ed., pp.
37-172: Springer, Boston, MA, 1969.

[7] W. Poppelbaum, C. Afuso, and J. Esch, “Stochastic computing elements
and systems,” in Proceedings of the Fall Joint Computer Conference on -
AFIPS'67, Anaheim, California, 1967, pp. 635-644.

[8] S. Aygun, M. Najafi, M. Imani, and E. Gunes, “Agile simulation of
stochastic computing image processing with contingency tables,” IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 42, no. 10, pp.
3474-3478, Oct. 2023.

[9] N. Temenos, and P. Sotiriadis, “Modeling a stochastic computing
nonscaling adder and its application in image sharpening,” IEEE Trans.
Circuits Syst., II, Exp. Briefs, vol. 69, no. 5, pp. 2543-2547, May. 2022.

[10] N. Temenos, and P. Sotiriadis, “A stochastic computing sigma-delta
adder architecture for efficient neural network design,” IEEE J. Emerging
Sel. Top. Circuits Syst., vol. 13, no. 1, pp. 285-294, Mar. 2023.

[11] J. Rosselló, J. Font-Rosselló, C. Frasser, A. Morán, E. Skibinsky-Gitlin,
V. Canals, and M. Roca, “Highly optimized hardware morphological
neural network through stochastic computing and tropical pruning,”
IEEE J. Emerging Sel. Top. Circuits Syst., vol. 13, no. 1, pp. 249-256,
Mar. 2023.

[12] T. Li, W. Romaszkan, S. Pamarti, and P. Gupta, “Rex-SC:
Range-extended stochastic computing accumulation for neural network
acceleration,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol.
42, no. 12, pp. 4423-4435, Jun. 2023.

[13] A. Morán, L. Parrilla, M. Roca, J. Font-Rosselló, E. Isern, and V. Canals,
“Digital implementation of radial basis function neural networks based
on stochastic computing,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.
13, no. 1, pp. 257-269, Dec. 2023.

[14] S. Wang, G. Xie, X. Cheng, and Y. Zhang, “Weighted-adder-based
polynomial computation using correlated unipolar stochastic bitstreams,”

Fig. 23. (a) Original degraded image. (b) Exact computing result. Stochastic
computing results with bit length (c) 16, (d) 32, (e) 64, (f) 128, (g) 256, (h) 512,
(i) 1024.

Fig. 24. The MSEs of the three SC architectures for the Phansalkar algorithm.

TABLE VIII
THE HARDWARE MEASUREMENTS OF THE PHANSALKAR ALGORITHM

Design Area Power CPD ADP PDP
Design_1 1833.325 0.1657 1.42 2603.32 0.2353
Design_2 1829.092 0.1641 1.38 2524.15 0.2265
Proposed 1627.819 0.1331 1.41 2295.23 0.1877

Exact 18597.15 1.7828 7.85 145987.60 13.9950
Area: μm2; Power: mW; CPD: ns; ADP: μm2∙ns; PDP: mW∙ns.

IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 69, no. 11, pp. 4528-4532,
Nov. 2022.

[15] S. Chu, C. Wu, T. Nguyen, and B. Liu, “Polynomial computation using
unipolar stochastic logic and correlation technique,” IEEE Trans.
Comput., vol. 71, no. 6, pp. 1358-1373, May. 2021.

[16] P. Li, D. Lilja, W. Qian, K. Bazargan, and M. Riedel, “Computation on
stochastic bit streams digital image processing case studies,” IEEE Trans.
Very Large Scale Integr. VLSI Syst., vol. 22, no. 3, pp. 449-462, Mar.
2014.

[17] Y. Zhang, X. Chen, J. Han, and G. Xie, “Stochastic mean circuits based
on inner-product units using correlated bitstreams,” IEEE Trans. Circuits
Syst., II, Exp. Briefs, pp. 1-1, Sep. 2023.

[18] M. Najafi, and M. Salehi, “A fast fault-tolerant architecture for Sauvola
local image thresholding algorithm using stochastic computing,” IEEE
Trans. Very Large Scale Integr. VLSI Syst., vol. 24, no. 2, pp. 808-812,
Feb. 2016.

[19] N. Phansalkar, S. More, A. Sabale, and M. Joshi, “Adaptive local
thresholding for detection of nuclei in diversity stained cytology images,”
in International Conference on Communications and Signal Processing,
Kerala, India, 2011, pp. 218-220.

[20] V. Lee, A. Alaghi, and L. Ceze, “Correlation manipulating circuits for
stochastic computing,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Dresden, Germany, 2018, pp.
1417-1422.

[21] A. Alaghi, W. Qian, and J. Hayes, “The promise and challenge of
stochastic computing,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 37, no. 8, pp. 1515-1531, Aug. 2018.

[22] S. Liu, and J. Han, “Toward energy-efficient stochastic circuits using
parallel Sobol sequences,” IEEE Trans. Very Large Scale Integr. VLSI
Syst., vol. 26, no. 7, pp. 1326-1339, Jul. 2018.

[23] B. Brown, and H. Card, “Stochastic neural computation I: Computational
elements,” IEEE Trans. Comput., vol. 50, no. 9, pp. 891-905, Sep. 2001.

[24] A. Alaghi, and J. Hayes, “Exploiting correlation in stochastic circuit
design,” in 2013 IEEE 31st International Conference on Computer
Design (ICCD), Asheville, NC, USA, 2013, pp. 39-46.

[25] "The USC-SIPI image database." 1981. [Online]. Available:
https://sipi.usc.edu/database/.

[26] I. Pratikakis, B. Gatos, and K. Ntirogiannis, “ICDAR 2011 document
image binarization contest (DIBCO 2011),” in 11th International
Conference on Document Analysis and Recognition (ICDAR 2011),
Beijing, China, 2011, pp. 1506-1510.

[27] S. Wang, G. Xie, W. Xu, X. Cheng, and Y. Zhang, “High-accuracy mean
circuits design by manipulating correlation for stochastic computing,” Int.
J. Circuit Theory Appl., vol. 50, no. 10, pp. 3692-3703, Jun. 2022.

[28] M. Steele, The Cauchy-Schwarz master class: An introduction to the art
of mathematical inequalities, New York, NY, United States: Cambridge
University Press, 2004.

[29] Z. Zhang, W. Zhang, S. Xiong, and Y. Zhao, “An accurate and
time-efficient subtractor by cross format coding in stochastic computing,”
in 2022 IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), Shenzhen, China, 2022, pp. 1-5.

[30] Y. Zhou, G. Xie, J. Han, and Y. Zhang, “Absolute subtraction and
division circuits using uncorrelated random bitstreams in stochastic
computing,” in 2021 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), 2021, pp. 1-6.

[31] S. Liu, W. Gross, and J. Han, “Introduction to dynamic stochastic
computing,” IEEE Circuits Syst. Mag., vol. 20, no. 3, pp. 19-33, Aug.
2020.

[32] S. Liu, and J. Han, “Dynamic stochastic computing for digital signal
processing applications,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Grenoble, France, 2020, pp. 604-609.

[33] Y. Liu, and K. Parhi, “Computing polynomials using unipolar stochastic
logic,” ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, pp. 1-30,
May. 2017.

[34] D. Wu, and J. Miguel, “In-stream stochastic division and square root via
correlation,” in 2019 56th ACM/EDAC/IEEE Design Automation
Conference, Las Vegas, NV, USA, 2019, pp. 1-6.

[35] T. Chen, and J. Hayes, “Design of division circuits for stochastic
computing,” in 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), Pittsburgh, PA, USA, 2016, pp. 116-121.

[36] D. Wu, R. Yin, and J. Miguel, “In-stream correlation-based division and
bit-inserting square root in stochastic computing,” IEEE Des. Test, vol.
38, no. 6, pp. 53-59, Dec. 2021.

[37] K. Parhi, and Y. Liu, “Computing arithmetic functions using stochastic
logic by series expansion,” IEEE Trans. Emerging Top. Comput., vol. 7,
no. 1, pp. 44-59, Mar. 2019.

[38] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja, “An architecture
for fault-tolerant computation with stochastic logic,” IEEE Trans.
Comput., vol. 60, no. 1, pp. 93-105, Jan. 2011.

[39] W. Qian, and M. Riedel, “The synthesis of robust polynomial arithmetic
with stochastic logic,” in 2008 45th ACM/IEEE Design Automation
Conference, Anaheim, CA, USA, 2008, pp. 648-653.

[40] P. Li, D. Lilja, W. Qian, K. Bazargan, and M. Riedel, “The synthesis of
complex arithmetic computation on stochastic bit streams using
sequential logic,” in 2012 IEEE/ACM International Conference on
Computer-Aided Design, New York, 2012, pp. 480-487.

[41] Z. Li, Z. Chen, Y. Zhang, Z. Huang, and W. Qian, “Simultaneous area
and latency optimization for stochastic circuits by d flip-flop insertion,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 38, no. 7, pp.
1251-1264, Jul. 2019.

[42] P. Li, and D. Lilja, “Accelerating the performance of stochastic
encoding-based computations by sharing bits in consecutive bit streams,”
in 2013 IEEE 24th International Conference on Application-Specific
Systems, Architectures and Processors, New York, 2013, pp. 257-260.

[43] P. Meher, and T. Stouraitis, Arithmetic circuits for DSP applications,
Hoboken, NewJersey: John Wiley & Sons, Inc., 2017.

[44] P. Meher, J. Valls, T. Juang, K. Sridharan, and K. Maharatna, “50 years
of CORDIC: Algorithms, architectures, and applications,” IEEE Trans.
Circuits Syst. I Regul. Pap., vol. 56, no. 9, pp. 1893-1907, Sep. 2009.

[45] L. Chen, “Low power designs using approximate computing and
emerging memory at nanoscales,” The Department of Electrical and
Computer Engineering, Northeastern University, Boston, Massachusetts,
2021.

https://sipi.usc.edu/database/

Yongqiang Zhang received the B.E. degree in electronic science and
technology from Anhui Jianzhu University, Hefei, China, in 2013, and the Ph.D.
degree in integrated circuits and systems from Hefei University of Technology,
Hefei, in 2018. He was a Visiting Student with the Department of Electrical and
Computer Engineering, University of Alberta, for one year. He is currently with
the School of Microelectronics, Hefei University of Technology. His research
interests include digital IC, inexact computing, and nanoelectronic systems.

Jiao Qin received the B.S. degree in electronic information science and
technology from Lanzhou University of Technology, Lanzhou, China, in 2021.
She is currently pursuing an M.S. degree in the new generation of information
technology with the Hefei University of Technology. Her research interests
include integrated circuit design and stochastic computing.

Jie Han received the B.Sc. degree in electronic engineering from Tsinghua
University, Beijing, China, in 1999 and the Ph.D. degree from the Delft
University of Technology, The Netherlands, in 2004. He is currently a
Professor and Director of Computer Engineering in the Department of
Electrical and Computer Engineering at the University of Alberta, Edmonton,
AB, Canada. His research interests include approximate computing, stochastic
computation, reliability and fault tolerance, nanoelectronic circuits and systems,
and novel computational models for learning and biological applications.

Guangjun Xie received the Ph.D. degree in signal and information processing
from the University of Science and Technology of China, Hefei, China, in 2002.
He worked as a post-doctor in optics at the University of Science and
Technology of China, Hefei, China, from 2003 to 2005. He was a senior visitor
at IMEC in 2007 and ASIC in 2011. He is currently a Professor and Dean at the
School of Microelectronics, Hefei University of Technology, Hefei, China. His
research interests include VLSI design, reliability and fault tolerance,
nanoelectronic circuits and systems.

	I. Introduction
	II. Background
	A. Phansalkar Algorithm
	B. Stochastic Computing

	III. A Stochastic Computing Architecture
	A. Parameter Setting
	B. Formulation
	C. The Overall Architecture
	D. A Stochastic Mean Circuit (SMC)
	E. A Unipolar Subtractor (USUB)
	F. A Stochastic Square Root Circuit (SQRT)
	G. A Stochastic Exponential Circuit (SEXP)

	IV. Experimental Results
	A. Accuracy Comparison
	B. Hardware Comparison

	V. Conclusion
	References

